Scattering theory for nonlinear Schrodinger equations with inverse-square potential

被引:57
|
作者
Zhang, Junyong [1 ,2 ,3 ]
Zheng, Jiqiang [4 ,5 ]
机构
[1] Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
[3] Australian Natl Univ, Dept Math, Canberra, ACT 0200, Australia
[4] Univ Nice Sophia Antipolis, F-06108 Nice 02, France
[5] Inst Univ France, Paris, France
基金
中国国家自然科学基金; 澳大利亚研究理事会; 北京市自然科学基金;
关键词
Nonlinear Schrodinger equation; Inverse square potential; Interaction Morawetz estimates; Scattering; CAUCHY-PROBLEM; WAVE-EQUATION; CONICAL ENDS; DECAY; EVOLUTIONS; MANIFOLDS; OPERATORS; ROUGH;
D O I
10.1016/j.jfa.2014.08.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the long-time behavior of solutions to nonlinear Schrodinger equations with some critical rough potential of a vertical bar x vertical bar(-2) type. The new ingredients are the interaction Morawetz-type inequalities and Sobolev norm property associated with P-a = -Delta + a vertical bar x vertical bar(-2). We use such properties to obtain the scattering theory for the defocusing energy-subcritical nonlinear Schrodinger equation with inverse square potential in energy space H-1(R-n). (C) 2014 Published by Elsevier Inc.
引用
收藏
页码:2907 / 2932
页数:26
相关论文
共 50 条