Non-Parametric Change-Point Estimation using String Matching Algorithms

被引:0
|
作者
Oliver Johnson
Dino Sejdinovic
James Cruise
Robert Piechocki
Ayalvadi Ganesh
机构
[1] University of Bristol,School of Mathematics
[2] University College London,Gatsby Computational Neuroscience Unit
[3] Heriot-Watt University Edinburgh Campus,The Department of Actuarial Mathematics and Statistics, and the Maxwell Institute for Mathematical Sciences
[4] University of Bristol,Centre for Communications Research
来源
Methodology and Computing in Applied Probability | 2014年 / 16卷
关键词
Change-point estimation; Entropy; Non-parametric; String matching; Primary 62L10; Secondary 62M09; 68W32;
D O I
暂无
中图分类号
学科分类号
摘要
Given the output of a data source taking values in a finite alphabet, we wish to estimate change-points, that is times when the statistical properties of the source change. Motivated by ideas of match lengths in information theory, we introduce a novel non-parametric estimator which we call CRECHE (CRossings Enumeration CHange Estimator). We present simulation evidence that this estimator performs well, both for simulated sources and for real data formed by concatenating text sources. For example, we show that we can accurately estimate the point at which a source changes from a Markov chain to an IID source with the same stationary distribution. Our estimator requires no assumptions about the form of the source distribution, and avoids the need to estimate its probabilities. Further, establishing a fluid limit and using martingale arguments.
引用
收藏
页码:987 / 1008
页数:21
相关论文
共 50 条
  • [41] Non-parametric estimation of the sill in geostatistics
    Cherry, S
    ENVIRONMETRICS, 1997, 8 (01) : 13 - 27
  • [42] Non-parametric estimation of historical volatility
    Randal, JA
    Thomson, PJ
    Lally, MT
    QUANTITATIVE FINANCE, 2004, 4 (04) : 427 - 440
  • [43] Detection threshold for non-parametric estimation
    Abdourrahmane M. Atto
    Dominique Pastor
    Gregoire Mercier
    Signal, Image and Video Processing, 2008, 2 : 207 - 223
  • [44] NON-PARAMETRIC ESTIMATION OF A REGRESSION FUNCION
    SCHUSTER, EF
    ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (02): : 695 - +
  • [45] New ideas in non-parametric estimation
    Pistone, G
    DISORDERED AND COMPLEX SYSTEMS, 2001, 553 : 159 - 164
  • [46] φ-Divergence Based Procedure for Parametric Change-Point Problems
    Batsidis, A.
    Martin, N.
    Pardo, L.
    Zografos, K.
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2016, 18 (01) : 21 - 35
  • [47] Non-parametric estimation of the residual distribution
    Akritas, MG
    Van Keilegom, I
    SCANDINAVIAN JOURNAL OF STATISTICS, 2001, 28 (03) : 549 - 567
  • [48] Non-parametric estimation of morphological lopsidedness
    Giese, Nadine
    van der Hulst, Thijs
    Serra, Paolo
    Oosterloo, Tom
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 461 (02) : 1656 - 1673
  • [49] Non-parametric estimation of signals vectors
    Marchuk, L.A.
    Giniyatullin, N.F.
    Borisov, K.S.
    Izvestiya Vysshikh Uchebnykh Zavedenij. Radioelektronika, 2001, 44 (09): : 31 - 39
  • [50] Non-Parametric Estimation of Technical Progress
    Kevin J. Fox
    Journal of Productivity Analysis, 1998, 10 : 235 - 250