Non-parametric estimation of the residual distribution

被引:131
|
作者
Akritas, MG
Van Keilegom, I
机构
[1] Limburgs Univ Ctr, Diepenbeek, Belgium
[2] Penn State Univ, University Pk, PA 16802 USA
关键词
asymptotic representation; goodness-of-fit; non-parametric regression residuals; prediction intervals; residual distribution; weak convergence;
D O I
10.1111/1467-9469.00254
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a heteroscedastic regression model Y = m(X) + sigma (X)epsilon, where the functions m and sigma are "smooth", and epsilon is independent of X. An estimator of the distribution of epsilon based on non-parametric regression residuals is proposed and its weak convergence is obtained. Applications to prediction intervals and goodness-of-fit tests are discussed.
引用
收藏
页码:549 / 567
页数:19
相关论文
共 50 条