Non-Parametric Change-Point Estimation using String Matching Algorithms

被引:0
|
作者
Oliver Johnson
Dino Sejdinovic
James Cruise
Robert Piechocki
Ayalvadi Ganesh
机构
[1] University of Bristol,School of Mathematics
[2] University College London,Gatsby Computational Neuroscience Unit
[3] Heriot-Watt University Edinburgh Campus,The Department of Actuarial Mathematics and Statistics, and the Maxwell Institute for Mathematical Sciences
[4] University of Bristol,Centre for Communications Research
来源
Methodology and Computing in Applied Probability | 2014年 / 16卷
关键词
Change-point estimation; Entropy; Non-parametric; String matching; Primary 62L10; Secondary 62M09; 68W32;
D O I
暂无
中图分类号
学科分类号
摘要
Given the output of a data source taking values in a finite alphabet, we wish to estimate change-points, that is times when the statistical properties of the source change. Motivated by ideas of match lengths in information theory, we introduce a novel non-parametric estimator which we call CRECHE (CRossings Enumeration CHange Estimator). We present simulation evidence that this estimator performs well, both for simulated sources and for real data formed by concatenating text sources. For example, we show that we can accurately estimate the point at which a source changes from a Markov chain to an IID source with the same stationary distribution. Our estimator requires no assumptions about the form of the source distribution, and avoids the need to estimate its probabilities. Further, establishing a fluid limit and using martingale arguments.
引用
收藏
页码:987 / 1008
页数:21
相关论文
共 50 条
  • [31] Density estimation using non-parametric and semi-parametric mixtures
    Wang, Yong
    Chee, Chew-Seng
    STATISTICAL MODELLING, 2012, 12 (01) : 67 - 92
  • [32] Short-term sales forecasting with change-point evaluation and pattern matching algorithms
    Yan, Hong-Sen
    Tu, Xin
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (05) : 5426 - 5439
  • [33] NON-PARAMETRIC MULTIPLE CHANGE POINT ANALYSIS OF THE GLOBAL FINANCIAL CRISIS
    Allen, David E.
    McAleer, Michael
    Powell, Robert J.
    Singh, Abhay K.
    ANNALS OF FINANCIAL ECONOMICS, 2018, 13 (02)
  • [34] Change-point estimation in ARCH models
    Kokoszka, P
    Leipus, R
    BERNOULLI, 2000, 6 (03) : 513 - 539
  • [35] Fuzzy Change-Point Algorithms for Regression Models
    Chang, Shao-Tung
    Lu, Kang-Ping
    Yang, Miin-Shen
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2015, 23 (06) : 2343 - 2357
  • [36] Robust Algorithms for Change-Point Regressions Using the t-Distribution
    Lu, Kang-Ping
    Chang, Shao-Tung
    MATHEMATICS, 2021, 9 (19)
  • [37] Parametric and non-parametric gradient matching for network inference: a comparison
    Dony, Leander
    He, Fei
    Stumpf, Michael P. H.
    BMC BIOINFORMATICS, 2019, 20 (1)
  • [38] Parametric and non-parametric gradient matching for network inference: a comparison
    Leander Dony
    Fei He
    Michael P. H. Stumpf
    BMC Bioinformatics, 20
  • [39] Hazard estimation using non-parametric and parametric methods for mortality causes.
    Aalabaf-Sabaghi, M
    INSURANCE MATHEMATICS & ECONOMICS, 2003, 33 (02): : 444 - 444
  • [40] Non-parametric estimation of tail dependence
    Schmidt, R
    Stadmüller, U
    SCANDINAVIAN JOURNAL OF STATISTICS, 2006, 33 (02) : 307 - 335