Non-parametric estimation of tail dependence

被引:200
|
作者
Schmidt, R [1 ]
Stadmüller, U
机构
[1] Univ Cologne, Dept Econ & Social Stat, D-50923 Cologne, Germany
[2] Univ Ulm, Dept Number Theory & Probabil Theory, D-89069 Ulm, Germany
关键词
asymptotic normality; copula; empirical copula; non-parametric estimation; strong consistency; tail copula; tail dependence; tail-dependence coefficient;
D O I
10.1111/j.1467-9469.2005.00483.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Dependencies between extreme events (extremal dependencies) are attracting an increasing attention in modern risk management. In practice, the concept of tail dependence represents the current standard to describe the amount of extremal dependence. In theory, multi-variate extreme-value theory turns out to be the natural choice to model the latter dependencies. The present paper embeds tail dependence into the concept of tail copulae which describes the dependence structure in the tail of multivariate distributions but works more generally. Various non-parametric estimators for tail copulae and tail dependence are discussed, and weak convergence, asymptotic normality, and strong consistency of these estimators are shown by means of a functional delta method. Further, weak convergence of a general upper-order rank-statistics for extreme events is investigated and the relationship to tail dependence is provided. A simulation study compares the introduced estimators and two financial data sets were analysed by our methods.
引用
收藏
页码:307 / 335
页数:29
相关论文
共 50 条
  • [1] Clustering of time series via non-parametric tail dependence estimation
    Fabrizio Durante
    Roberta Pappadà
    Nicola Torelli
    [J]. Statistical Papers, 2015, 56 : 701 - 721
  • [2] Clustering of time series via non-parametric tail dependence estimation
    Durante, Fabrizio
    Pappada, Roberta
    Torelli, Nicola
    [J]. STATISTICAL PAPERS, 2015, 56 (03) : 701 - 721
  • [3] NON-PARAMETRIC ESTIMATION UNDER STRONG DEPENDENCE
    Zhao, Zhibiao
    Zhang, Yiyun
    Li, Runze
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2014, 35 (01) : 4 - 15
  • [4] Non-Parametric Estimation of the Limit Dependence Function of Multivariate Extremes
    B. Abdous
    K. Ghoudi
    A. Khoudraji
    [J]. Extremes, 1999, 2 (3) : 245 - 268
  • [5] Parametric and non-parametric estimation of extreme earthquake event: the joint tail inference for mainshocks and aftershocks
    Cai, Juan-Juan
    Wan, Phyllis
    Ozel, Gamze
    [J]. EXTREMES, 2021, 24 (02) : 199 - 214
  • [6] Parametric and non-parametric estimation of extreme earthquake event: the joint tail inference for mainshocks and aftershocks
    Juan-Juan Cai
    Phyllis Wan
    Gamze Ozel
    [J]. Extremes, 2021, 24 : 199 - 214
  • [7] NON-PARAMETRIC ESTIMATION OF CONDITIONAL TAIL EXPECTATION FOR LONG-HORIZON RETURNS
    Ho, Hwai-Chung
    Chen, Hung-Yin
    Tsai, Henghsiu
    [J]. STATISTICA SINICA, 2021, 31 (01) : 547 - 569
  • [8] Non-parametric if and DOA estimation
    Djurovic, I
    Stankovic, L
    [J]. SEVENTH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOL 1, PROCEEDINGS, 2003, : 149 - 152
  • [9] NON-PARAMETRIC ESTIMATION OF SURVIVORSHIP
    MEIER, P
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1955, 50 (270) : 589 - 589
  • [10] Detection threshold for non-parametric estimation
    Abdourrahmane M. Atto
    Dominique Pastor
    Gregoire Mercier
    [J]. Signal, Image and Video Processing, 2008, 2 : 207 - 223