Non-parametric estimation of tail dependence

被引:200
|
作者
Schmidt, R [1 ]
Stadmüller, U
机构
[1] Univ Cologne, Dept Econ & Social Stat, D-50923 Cologne, Germany
[2] Univ Ulm, Dept Number Theory & Probabil Theory, D-89069 Ulm, Germany
关键词
asymptotic normality; copula; empirical copula; non-parametric estimation; strong consistency; tail copula; tail dependence; tail-dependence coefficient;
D O I
10.1111/j.1467-9469.2005.00483.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Dependencies between extreme events (extremal dependencies) are attracting an increasing attention in modern risk management. In practice, the concept of tail dependence represents the current standard to describe the amount of extremal dependence. In theory, multi-variate extreme-value theory turns out to be the natural choice to model the latter dependencies. The present paper embeds tail dependence into the concept of tail copulae which describes the dependence structure in the tail of multivariate distributions but works more generally. Various non-parametric estimators for tail copulae and tail dependence are discussed, and weak convergence, asymptotic normality, and strong consistency of these estimators are shown by means of a functional delta method. Further, weak convergence of a general upper-order rank-statistics for extreme events is investigated and the relationship to tail dependence is provided. A simulation study compares the introduced estimators and two financial data sets were analysed by our methods.
引用
收藏
页码:307 / 335
页数:29
相关论文
共 50 条
  • [41] ON 2-STAGE NON-PARAMETRIC ESTIMATION
    YEN, EH
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (03): : 1099 - &
  • [42] NON-PARAMETRIC ESTIMATION OF A MULTIVARIATE PROBABILITY DENSITY
    EPANECHN.VA
    [J]. THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1969, 14 (01): : 153 - &
  • [43] 2-STAGE NON-PARAMETRIC ESTIMATION
    YEN, EYH
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (04): : 1502 - &
  • [44] Non-parametric Estimation of Integral Probability Metrics
    Sriperumbudur, Bharath K.
    Fukumizu, Kenji
    Gretton, Arthur
    Schoelkopf, Bernhard
    Lanckriet, Gert R. G.
    [J]. 2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1428 - 1432
  • [45] AN ITERATIVE NON-PARAMETRIC APPROACH TO THE ESTIMATION OF POLYSPECTRA
    Butt, Naveed R.
    Jakobsson, Andreas
    [J]. 18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 1038 - 1042
  • [46] Non-parametric estimation for the M/G/∞ queue
    Bingham, NH
    Pitts, SM
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1999, 51 (01) : 71 - 97
  • [47] On Linearly Precompressed Non-Parametric Spectrum Estimation
    Elsner, Jens P.
    Braun, Martin
    Chaichenets, Leonid
    Jondral, Friedrich K.
    [J]. 2009 IEEE/SP 15TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 772 - 775
  • [48] Non-parametric estimation of residual moments and covariance
    Evans, Dafydd
    Jones, Antonia J.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 464 (2099): : 2831 - 2846
  • [49] A note on non-parametric estimation with predicted variables
    Sperlich, Stefan
    [J]. ECONOMETRICS JOURNAL, 2009, 12 (02): : 382 - 395
  • [50] On the consistency of non-parametric estimation of the spatial spectrum
    Ephraty, A
    Tabrikian, J
    Messer, H
    [J]. NINETEENTH CONVENTION OF ELECTRICAL AND ELECTRONICS ENGINEERS IN ISRAEL, 1996, : 247 - 250