BMO spaces associated with semigroups of operators

被引:0
|
作者
M. Junge
T. Mei
机构
[1] University of Illinois,Department of Mathematics
[2] Wayne state University,Department of Mathematics
来源
Mathematische Annalen | 2012年 / 352卷
关键词
46L51 (42B25 46L10 47D06);
D O I
暂无
中图分类号
学科分类号
摘要
We study BMO spaces associated with semigroup of operators on noncommutative function spaces (i.e. von Neumann algebras) and apply the results to boundedness of Fourier multipliers on non-abelian discrete groups. We prove an interpolation theorem for BMO spaces and prove the boundedness of a class of Fourier multipliers on noncommutative Lp spaces for all 1 < p < ∞, with optimal constants in p.
引用
收藏
页码:691 / 743
页数:52
相关论文
共 50 条
  • [41] Semigroups of composition operators on the Besov spaces
    Chen, Renyu
    Dong, Yali
    ANNALS OF FUNCTIONAL ANALYSIS, 2025, 16 (02)
  • [42] BMO and Hankel Operators on Fock-Type Spaces
    Xiaofeng Wang
    Guangfu Cao
    Kehe Zhu
    The Journal of Geometric Analysis, 2015, 25 : 1650 - 1665
  • [43] ON SEMIGROUPS OF OPERATORS IN LOCALLY CONVEX SPACES
    TERKELSEN, F
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 22 (02) : 340 - +
  • [44] SEMIGROUPS OF OPERATORS IN BANACH-SPACES
    PAZY, A
    LECTURE NOTES IN MATHEMATICS, 1983, 1017 : 508 - 524
  • [45] SEMIGROUPS OF COMPOSITION OPERATORS IN BERGMAN SPACES
    SISKAKIS, AG
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1987, 35 (03) : 397 - 406
  • [46] Weighted BMO and Hankel Operators Between Bergman Spaces
    Pau, Jordi
    Zhao, Ruhan
    Zhu, Kehe
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2016, 65 (05) : 1639 - 1673
  • [47] THE CENTRAL BMO SPACES AND LITTLEWOOD-PALEY OPERATORS
    Lu Shanzhen and Yang Dachun (Beijing Normal University
    ApproximationTheoryandItsApplications, 1995, (03) : 72 - 94
  • [48] BMO and Hankel Operators on Fock-Type Spaces
    Wang, Xiaofeng
    Cao, Guangfu
    Zhu, Kehe
    JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (03) : 1650 - 1665
  • [49] On boundedness of the Hardy and Bellman operators in the spaces H and BMO
    Golubov, B
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2000, 21 (1-2) : 145 - 158
  • [50] BMO spaces associated to operators with generalised Poisson bounds on non-doubling manifolds with ends
    Chen, Peng
    Xuan Thinh Duong
    Li, Ji
    Song, Liang
    Yan, Lixin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 270 : 114 - 184