Weighted BMO and Hankel Operators Between Bergman Spaces

被引:22
|
作者
Pau, Jordi [1 ]
Zhao, Ruhan [2 ]
Zhu, Kehe [3 ]
机构
[1] Univ Barcelona, Dept Matemat & Informat, E-08007 Barcelona, Catalonia, Spain
[2] SUNY Coll Brockport, Dept Math, Brockport, NY 14420 USA
[3] Shantou Univ, Dept Math, Shantou Shi 515063, Guangdong, Peoples R China
关键词
Bergman spaces; Hankel operators; BMO; Bergman metric; VMO;
D O I
10.1512/iumj.2016.65.5882
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a family of weighted BMO spaces in the Bergman metric on the unit ball of C-n, and use them to characterize complex functions f such that the big Hankel operators H-f and H-f(-) are both bounded or compact from a weighted Bergman space into a weighted Lesbegue space with possibly different exponents and different weights. As a consequence, when the symbol function f is holomorphic, we characterize bounded and compact Hankel operators Hf between weighted Bergman spaces. In particular, this resolves two questions left open in [7,12].
引用
收藏
页码:1639 / 1673
页数:35
相关论文
共 50 条