BMO spaces associated with semigroups of operators

被引:0
|
作者
M. Junge
T. Mei
机构
[1] University of Illinois,Department of Mathematics
[2] Wayne state University,Department of Mathematics
来源
Mathematische Annalen | 2012年 / 352卷
关键词
46L51 (42B25 46L10 47D06);
D O I
暂无
中图分类号
学科分类号
摘要
We study BMO spaces associated with semigroup of operators on noncommutative function spaces (i.e. von Neumann algebras) and apply the results to boundedness of Fourier multipliers on non-abelian discrete groups. We prove an interpolation theorem for BMO spaces and prove the boundedness of a class of Fourier multipliers on noncommutative Lp spaces for all 1 < p < ∞, with optimal constants in p.
引用
收藏
页码:691 / 743
页数:52
相关论文
共 50 条
  • [31] UMD-Valued Square Functions Associated with Bessel Operators in Hardy and BMO Spaces
    Betancor, Jorge J.
    Castro, Alejandro J.
    Rodriguez-Mesa, Lourdes
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 81 (03) : 319 - 374
  • [32] Duality of hardy and BMO spaces associated with operators with heat Kernel bounds on product domains
    Deng, Donggao
    Song, Liang
    Tan, Chaoqiang
    Yan, Lixin
    JOURNAL OF GEOMETRIC ANALYSIS, 2007, 17 (03) : 455 - 483
  • [33] Duality of Hardy and BMO spaces associated with operators with heat kernel bounds on product domains
    Donggao Deng
    Liang Song
    Chaoqiang Tan
    Lixin Yan
    The Journal of Geometric Analysis, 2007, 17 : 455 - 483
  • [34] UMD-Valued Square Functions Associated with Bessel Operators in Hardy and BMO Spaces
    Jorge J. Betancor
    Alejandro J. Castro
    Lourdes Rodríguez-Mesa
    Integral Equations and Operator Theory, 2015, 81 : 319 - 374
  • [35] Variation Operators for Semigroups and Riesz Transforms on BMO in the Schrödinger Setting
    Jorge J. Betancor
    Juan C. Fariña
    Eleonor Harboure
    Lourdes Rodríguez-Mesa
    Potential Analysis, 2013, 38 : 711 - 739
  • [36] Toeplitz Operators with BMO Symbols on Holomorphic Besov Spaces
    Edgar Tchoundja
    Complex Analysis and Operator Theory, 2014, 8 : 955 - 974
  • [38] Semigroups of composition operators on Qp spaces
    Wu, Fanglei
    Wulan, Hasi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 496 (02)
  • [39] APPROXIMATION OF SEMIGROUPS OF OPERATORS ON FRECHET SPACES
    BUCHE, AB
    PROCEEDINGS OF THE JAPAN ACADEMY, 1968, 44 (08): : 816 - &
  • [40] SEMIGROUPS OF OPERATORS IN LOCALLY CONVEX SPACES
    OUCHI, S
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1973, 25 (02) : 265 - 276