Critical nonhomogeneous fourth-order Schrödinger–Kirchhoff-type equations

被引:0
|
作者
Antônio de Pádua Farias de Souza Filho
机构
[1] Universidade Federal Rural do Semi-Árido,Departamento de Ciências Exatas e Naturais
关键词
Higher-order elliptic equations; Kirchhoff-type equation; Critical exponent; Biharmonic; Compactness; 35J30; 31A30; 35B33;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the following class of stationary fourth-order Schrödinger–Kirchhoff-type equations: Δ2u-M‖∇u‖22Δu+V(x)u=h(x)|u|q-2u+|u|2∗-2u+g(x)|u|τ-2u,x∈RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Delta ^{2} u-M\left( \Vert \nabla u\Vert ^2_2 \right) \Delta u+V(x)u=h(x)|u|^{q-2}u+|u|^{2_*-2}u+ g(x)|u|^{\tau -2}u, ~~x \in \mathbb {R}^{N}, \end{aligned}$$\end{document}where N≥8,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 8,$$\end{document} and 2∗=2NN-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2_*=\frac{2N}{N-4}$$\end{document} is the critical Sobolev exponent. Under some assumptions on the Kirchhoff function M, the potential V(x) and g(x), by using Ekeland’s Variational Principle and the Mountain Pass Theorem, we obtain the existence of multiple solutions for the above problem. These results are new even for the local case, which corresponds to nonlinear fourth order Schrödinger equations.
引用
收藏
页码:1 / 18
页数:17
相关论文
共 50 条
  • [1] Critical nonhomogeneous fourth-order Schrodinger-Kirchhoff-type equations
    Farias de Souza Filho, Antonio de Padua
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2024, 10 (01) : 1 - 18
  • [2] MULTIPLE SOLUTIONS FOR THE NONHOMOGENEOUS FOURTH ORDER ELLIPTIC EQUATIONS OF KIRCHHOFF-TYPE
    Xu, Liping
    Chen, Haibo
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (04): : 1215 - 1226
  • [3] Sign-changing solutions for Schrödinger–Kirchhoff-type fourth-order equation with potential vanishing at infinity
    Wen Guan
    Hua-Bo Zhang
    Journal of Inequalities and Applications, 2021
  • [4] Perturbed fourth-order Kirchhoff-type problems
    Heidarkhani, Shapour
    Moradi, Shahin
    Caristi, Giuseppe
    Ge, Bin
    TBILISI MATHEMATICAL JOURNAL, 2018, 11 (04): : 113 - 143
  • [5] Two solutions to Kirchhoff-type fourth-order implusive elastic beam equations
    Jian Liu
    Wenguang Yu
    Boundary Value Problems, 2021
  • [6] Two solutions to Kirchhoff-type fourth-order implusive elastic beam equations
    Liu, Jian
    Yu, Wenguang
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [7] Nontrivial Solutions for One-Dimensional Fourth-Order Kirchhoff-Type Equations
    Heidarkhani, Shapour
    Ferrara, Massimiliano
    Khademloo, Somaye
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (01) : 217 - 236
  • [8] Nontrivial Solutions for One-Dimensional Fourth-Order Kirchhoff-Type Equations
    Shapour Heidarkhani
    Massimiliano Ferrara
    Somaye Khademloo
    Mediterranean Journal of Mathematics, 2016, 13 : 217 - 236
  • [9] Asymptotics for a Class of Coupled Fourth-Order Schrödinger Equations
    R. Ghanmi
    Mediterranean Journal of Mathematics, 2018, 15
  • [10] Multiple Solutions for Critical Fourth-Order Elliptic Equations of Kirchhoff type
    Zhao, Fu
    Liu, Zeyi
    Liang, Sihua
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (02) : 1057 - 1064