Critical nonhomogeneous fourth-order Schrödinger–Kirchhoff-type equations

被引:0
|
作者
Antônio de Pádua Farias de Souza Filho
机构
[1] Universidade Federal Rural do Semi-Árido,Departamento de Ciências Exatas e Naturais
关键词
Higher-order elliptic equations; Kirchhoff-type equation; Critical exponent; Biharmonic; Compactness; 35J30; 31A30; 35B33;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the following class of stationary fourth-order Schrödinger–Kirchhoff-type equations: Δ2u-M‖∇u‖22Δu+V(x)u=h(x)|u|q-2u+|u|2∗-2u+g(x)|u|τ-2u,x∈RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Delta ^{2} u-M\left( \Vert \nabla u\Vert ^2_2 \right) \Delta u+V(x)u=h(x)|u|^{q-2}u+|u|^{2_*-2}u+ g(x)|u|^{\tau -2}u, ~~x \in \mathbb {R}^{N}, \end{aligned}$$\end{document}where N≥8,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 8,$$\end{document} and 2∗=2NN-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2_*=\frac{2N}{N-4}$$\end{document} is the critical Sobolev exponent. Under some assumptions on the Kirchhoff function M, the potential V(x) and g(x), by using Ekeland’s Variational Principle and the Mountain Pass Theorem, we obtain the existence of multiple solutions for the above problem. These results are new even for the local case, which corresponds to nonlinear fourth order Schrödinger equations.
引用
收藏
页码:1 / 18
页数:17
相关论文
共 50 条
  • [21] Infinitely Many Solutions for Sublinear Schrödinger–Kirchhoff-Type Equations With General Potentials
    Lian Duan
    Lihong Huang
    Results in Mathematics, 2014, 66 : 181 - 197
  • [22] Ground state and nodal solutions for critical Schrödinger–Kirchhoff-type Laplacian problems
    Huabo Zhang
    Journal of Fixed Point Theory and Applications, 2021, 23
  • [23] Existence and Multiplicity of Solutions for Nonhomogeneous Schrodinger-Kirchhoff-Type Fourth-Order Elliptic Equations in RN
    Zuo, Jiabin
    An, Tianqing
    Ru, Yuanfang
    Zhao, Dafang
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (05)
  • [24] Global well-posedness for nonlinear fourth-order Schrödinger equations
    Xiuyan Peng
    Yi Niu
    Jie Liu
    Mingyou Zhang
    Jihong Shen
    Boundary Value Problems, 2016
  • [25] A note on the inhomogeneous fourth-order Schrödinger equation
    T. Saanouni
    R. Ghanmi
    Journal of Pseudo-Differential Operators and Applications, 2022, 13
  • [26] NODAL SOLUTIONS OF FOURTH-ORDER KIRCHHOFF EQUATIONS WITH CRITICAL GROWTH IN RN
    Pu, Hongling
    Li, Shiqi
    Liang, Sihua
    Repovs, Dusan D.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, : 1 - 20
  • [27] Soliton solutions for two kinds of fourth-order nonlinear nonlocal Schr?dinger equations
    Guo, Jia-Huan
    Guo, Rui
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 117
  • [28] Energy Scattering for Non-radial Inhomogeneous Fourth-Order Schrödinger Equations
    Tarek Saanouni
    Binhua Feng
    Mediterranean Journal of Mathematics, 2024, 21
  • [29] Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions
    马文秀
    Chinese Physics Letters, 2022, 39 (10) : 6 - 11
  • [30] Sign-changing solutions for fourth-order elliptic equations of Kirchhoff type with critical exponent
    Liang, Sihua
    Zhang, Binlin
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2021, (37) : 1 - 23