A note on the inhomogeneous fourth-order Schrödinger equation

被引:0
|
作者
T. Saanouni
R. Ghanmi
机构
[1] Qassim University,Department of Mathematics, College of Sciences and Arts of Uglat Asugour
[2] University of Tunis El Manar,LR03ES04 Partial Differential Equations and Applications, Faculty of Science of Tunis
关键词
Biharmonic inhomogeneous Schrödinger equation; Global existence; Blow-up; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the non-linear biharmonic Schödinger equation iu˙+Δ2u±F(x,|u|)u=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} i\dot{u}+\Delta ^2 u\pm F(x,|u|)u=0, \end{aligned}$$\end{document}where F(x,|u|)∈{|x|-2b|u|2(q-1),|x|-b|u|p-2(Iα∗|·|-b|u|p)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(x,|u|)\in \{|x|^{-2b}|u|^{2(q-1)},|x|^{-b}|u|^{p-2}(I_\alpha *|\cdot |^{-b}|u|^p)\}$$\end{document}, where b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b>0$$\end{document} and the source terms are inter-critical. First one develops a local theory in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} and in the energy space H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2$$\end{document}, by use of a sharp Gagliardo–Nirenberg type inequality. Then, one considers the global theory. Indeed, a sharp dichotomy of global versus non-global existence of solutions is obtained by use of the existence of ground states. Moreover, the strong instability of standing waves is proved. This note is a natural extension of Saanouni (Commun Pure Appl Anal 19(10): 5033–5057, 2020) to the inhomogeneous regime and gives some essential tools for the scattering of the focusing global solutions proved by Saanouni (Calc Var 60(113), 2021).
引用
收藏
相关论文
共 50 条
  • [1] Soliton Solutions and Conservation Laws for an Inhomogeneous Fourth-Order Nonlinear Schrödinger Equation
    Pan Wang
    Feng-Hua Qi
    Jian-Rong Yang
    [J]. Computational Mathematics and Mathematical Physics, 2018, 58 : 1856 - 1864
  • [2] ON THE DECAY PROPERTY OF THE CUBIC FOURTH-ORDER SCHR?DINGER EQUATION
    Yu, Xueying
    Yue, Haitian
    Zhao, Zehua
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (06) : 2619 - 2630
  • [3] A note on the inhomogeneous fourth-order Schrodinger equation
    Saanouni, T.
    Ghanmi, R.
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2022, 13 (04)
  • [4] Factorization technique for the fourth-order nonlinear Schrödinger equation
    Nakao Hayashi
    Pavel I. Naumkin
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 2343 - 2377
  • [5] The global solution of anisotropic fourth-order Schrödinger equation
    Hailing Su
    Cuihua Guo
    [J]. Advances in Difference Equations, 2019
  • [6] Dynamics of solitons in the fourth-order nonlocal nonlinear Schrödinger equation
    T. A. Gadzhimuradov
    A. M. Agalarov
    R. Radha
    B. Tamil Arasan
    [J]. Nonlinear Dynamics, 2020, 99 : 1295 - 1300
  • [7] Energy Scattering for Non-radial Inhomogeneous Fourth-Order Schrödinger Equations
    Tarek Saanouni
    Binhua Feng
    [J]. Mediterranean Journal of Mathematics, 2024, 21
  • [8] On Blowup Solutions to the Focusing Intercritical Nonlinear Fourth-Order Schrödinger Equation
    Van Duong Dinh
    [J]. Journal of Dynamics and Differential Equations, 2019, 31 : 1793 - 1823
  • [9] The asymptotic property for nonlinear fourth-order Schrödinger equation with gain or loss
    Cuihua Guo
    [J]. Boundary Value Problems, 2015
  • [10] Scattering of solutions with group invariance for the fourth-order nonlinear Schrödinger equation
    Komada, Koichi
    Masaki, Satoshi
    [J]. NONLINEARITY, 2024, 37 (08)