Nontrivial Solutions for One-Dimensional Fourth-Order Kirchhoff-Type Equations

被引:27
|
作者
Heidarkhani, Shapour [1 ]
Ferrara, Massimiliano [2 ]
Khademloo, Somaye [3 ]
机构
[1] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
[2] Univ Mediterranea Reggio Calabria, Dept Law & Econ, I-89131 Reggio Di Calabria, Italy
[3] Babol Noushirvani Univ Technol, Dept Basic Sci, Babol Sar, Iran
关键词
Multiplicity results; nontrivial solution; fourth-order Kirchhoff-type equation; critical point theory; variational methods; MULTIPLE SOLUTIONS; POSITIVE SOLUTIONS; EXISTENCE; THEOREM;
D O I
10.1007/s00009-014-0471-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using variational methods and critical point theory, we establish multiplicity results of nontrivial solutions for one-dimensional fourth-order Kirchhoff-type equations.
引用
收藏
页码:217 / 236
页数:20
相关论文
共 50 条
  • [1] Nontrivial Solutions for One-Dimensional Fourth-Order Kirchhoff-Type Equations
    Shapour Heidarkhani
    Massimiliano Ferrara
    Somaye Khademloo
    [J]. Mediterranean Journal of Mathematics, 2016, 13 : 217 - 236
  • [2] Two solutions to Kirchhoff-type fourth-order implusive elastic beam equations
    Jian Liu
    Wenguang Yu
    [J]. Boundary Value Problems, 2021
  • [3] Two solutions to Kirchhoff-type fourth-order implusive elastic beam equations
    Liu, Jian
    Yu, Wenguang
    [J]. BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [4] On The Existence of Solutions to One-Dimensional Fourth-Order Equations
    S. Shokooh
    G. A. Afrouzi
    A. Hadjian
    [J]. Ukrainian Mathematical Journal, 2021, 72 : 1820 - 1836
  • [5] On The Existence of Solutions to One-Dimensional Fourth-Order Equations
    Shokooh, S.
    Afrouzi, G. A.
    Hadjian, A.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2021, 72 (11) : 1820 - 1836
  • [6] Perturbed fourth-order Kirchhoff-type problems
    Heidarkhani, Shapour
    Moradi, Shahin
    Caristi, Giuseppe
    Ge, Bin
    [J]. TBILISI MATHEMATICAL JOURNAL, 2018, 11 (04): : 113 - 143
  • [7] Critical nonhomogeneous fourth-order Schrödinger–Kirchhoff-type equations
    Antônio de Pádua Farias de Souza Filho
    [J]. Journal of Elliptic and Parabolic Equations, 2024, 10 : 1 - 18
  • [8] INFINITELY MANY SOLUTIONS FOR PERTURBED FOURTH-ORDER KIRCHHOFF-TYPE PROBLEMS
    Nazari, Abdollah
    Afrouzi, Ghasem A.
    Heidarkhani, Shapour
    [J]. DYNAMIC SYSTEMS AND APPLICATIONS, 2016, 25 (1-2): : 237 - 251
  • [9] EXISTENCE OF THREE SOLUTIONS FOR IMPULSIVE PERTURBED ELASTIC BEAM FOURTH-ORDER EQUATIONS OF KIRCHHOFF-TYPE
    Heidarkhani, Shapour
    Salari, Amjad
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2017, 54 (01) : 119 - 140
  • [10] Bifurcation diagrams of one-dimensional Kirchhoff-type equations
    Shibata, Tetsutaro
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01) : 356 - 368