Perturbed fourth-order Kirchhoff-type problems

被引:0
|
作者
Heidarkhani, Shapour [1 ]
Moradi, Shahin [1 ]
Caristi, Giuseppe [2 ]
Ge, Bin [3 ]
机构
[1] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
[2] Univ Messina, Dept Econ, Via Verdi 75, Messina, Italy
[3] Harbin Engn Univ, Dept Appl Math, Harbin 150001, Heilongjiang, Peoples R China
来源
TBILISI MATHEMATICAL JOURNAL | 2018年 / 11卷 / 04期
关键词
Three distinct solutions; Fourth-order boundary value problem; Kirchhoff-type problem; Navier condition; Variational methods;
D O I
10.32513/tbilisi/1546570890
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the existence of at least three distinct weak solutions for a perturbed nonlocal fourth-order Kirchhoff-type problem with Navier boundary conditions under appropriate hypotheses on nonlinear terms. Our main tools are based on variational methods and some critical points theorems. We give some examples to illustrate the obtained results.
引用
收藏
页码:113 / 143
页数:31
相关论文
共 50 条
  • [1] INFINITELY MANY SOLUTIONS FOR PERTURBED FOURTH-ORDER KIRCHHOFF-TYPE PROBLEMS
    Nazari, Abdollah
    Afrouzi, Ghasem A.
    Heidarkhani, Shapour
    [J]. DYNAMIC SYSTEMS AND APPLICATIONS, 2016, 25 (1-2): : 237 - 251
  • [2] Multiplicity results for perturbed fourth-order Kirchhoff type elliptic problems
    Ferrara, Massimiliano
    Khademloo, Somaye
    Heidarkhani, Shapour
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 234 : 316 - 325
  • [3] Infinitely many positive weak solutions for a perturbed fourth-order kirchhoff-type on the whole space
    Tavani, Mohammad Reza Heidari
    Khodabakhshi, Mehdi
    Vaezpour, Seyyed Mansour
    [J]. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2021, 83 (01): : 79 - 88
  • [4] INFINITELY MANY POSITIVE WEAK SOLUTIONS FOR A PERTURBED FOURTH-ORDER KIRCHHOFF-TYPE ON THE WHOLE SPACE
    Tavani, Mohammad Reza Heidari
    Khodabaksi, Mehdi
    Vaezpour, Seyyed Mansour
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2021, 83 (01): : 79 - 88
  • [5] EXISTENCE OF THREE SOLUTIONS FOR IMPULSIVE PERTURBED ELASTIC BEAM FOURTH-ORDER EQUATIONS OF KIRCHHOFF-TYPE
    Heidarkhani, Shapour
    Salari, Amjad
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2017, 54 (01) : 119 - 140
  • [6] Existence Results for Perturbed Fourth-order Kirchhoff Type Elliptic Problems with Singular Term
    Ghazvehi, Ahmad
    Afrouzi, Ghasem A.
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [7] Critical nonhomogeneous fourth-order Schrödinger–Kirchhoff-type equations
    Antônio de Pádua Farias de Souza Filho
    [J]. Journal of Elliptic and Parabolic Equations, 2024, 10 : 1 - 18
  • [8] Multiple solutions for a perturbed fourth-order Kirchhoff type elliptic problem
    Heidarkhani, Shapour
    Khademloo, Somaye
    Solimaninia, Arezoo
    [J]. PORTUGALIAE MATHEMATICA, 2014, 71 (01) : 39 - 61
  • [9] Two solutions to Kirchhoff-type fourth-order implusive elastic beam equations
    Jian Liu
    Wenguang Yu
    [J]. Boundary Value Problems, 2021
  • [10] Nontrivial Solutions for One-Dimensional Fourth-Order Kirchhoff-Type Equations
    Heidarkhani, Shapour
    Ferrara, Massimiliano
    Khademloo, Somaye
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (01) : 217 - 236