Augmented Teichmüller spaces and orbifolds

被引:0
|
作者
Vladimir Hinich
Arkady Vaintrob
机构
[1] University of Haifa,Department of Mathematics
[2] University of Oregon,Department of Mathematics
来源
Selecta Mathematica | 2010年 / 16卷
关键词
Primary 32G15; Secondary 57R18; 55N32;
D O I
暂无
中图分类号
学科分类号
摘要
We study complex analytic properties of the augmented Teichmüller spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\mathcal{T}}_{g,n}}$$\end{document} obtained by adding to the classical Teichmüller spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}_{g,n}}$$\end{document} points corresponding to Riemann surfaces with nodal singularities. Unlike \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}_{g,n}}$$\end{document}, the space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\mathcal{T}}_{g,n}}$$\end{document} is not a complex manifold (it is not even locally compact). We prove, however, that the quotient of the augmented Teichmüller space by any finite index subgroup of the Teichmüller modular group has a canonical structure of a complex orbifold. Using this structure, we construct natural maps from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\mathcal{T}}}$$\end{document} to stacks of admissible coverings of stable Riemann surfaces. This result is important for understanding the cup-product in stringy orbifold cohomology. We also establish some new technical results from the general theory of orbifolds which may be of independent interest.
引用
收藏
页码:533 / 629
页数:96
相关论文
共 50 条