Augmented Teichmüller spaces and orbifolds

被引:0
|
作者
Vladimir Hinich
Arkady Vaintrob
机构
[1] University of Haifa,Department of Mathematics
[2] University of Oregon,Department of Mathematics
来源
Selecta Mathematica | 2010年 / 16卷
关键词
Primary 32G15; Secondary 57R18; 55N32;
D O I
暂无
中图分类号
学科分类号
摘要
We study complex analytic properties of the augmented Teichmüller spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\mathcal{T}}_{g,n}}$$\end{document} obtained by adding to the classical Teichmüller spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}_{g,n}}$$\end{document} points corresponding to Riemann surfaces with nodal singularities. Unlike \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}_{g,n}}$$\end{document}, the space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\mathcal{T}}_{g,n}}$$\end{document} is not a complex manifold (it is not even locally compact). We prove, however, that the quotient of the augmented Teichmüller space by any finite index subgroup of the Teichmüller modular group has a canonical structure of a complex orbifold. Using this structure, we construct natural maps from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\mathcal{T}}}$$\end{document} to stacks of admissible coverings of stable Riemann surfaces. This result is important for understanding the cup-product in stringy orbifold cohomology. We also establish some new technical results from the general theory of orbifolds which may be of independent interest.
引用
收藏
页码:533 / 629
页数:96
相关论文
共 50 条
  • [21] Teichmüller spaces for pointed Fuchsian groups
    MingFeng Sun
    YuLiang Shen
    [J]. Science China Mathematics, 2010, 53 : 2031 - 2038
  • [22] A uniqueness property for the quantization of Teichmüller Spaces
    Hua Bai
    [J]. Geometriae Dedicata, 2007, 128 : 1 - 16
  • [23] Isometric submersions of Teichmüller spaces are forgetful
    Dmitri Gekhtman
    Mark Greenfield
    [J]. Israel Journal of Mathematics, 2022, 247 : 499 - 517
  • [24] Group actions, Teichmüller spaces and cobordisms
    Apanasov B.N.
    [J]. Lobachevskii Journal of Mathematics, 2017, 38 (2) : 213 - 228
  • [25] UNIVERSAL COMMENSURABILITY AUGMENTED TEICHMÜLLER SPACE AND MODULI SPACE
    Hu, Guangming
    Miyachi, Hideki
    Qi, Yi
    [J]. ANNALES FENNICI MATHEMATICI, 2021, 46 (02): : 897 - 907
  • [26] Teichmüller Spaces and Negatively Curved Fiber Bundles
    Tom Farrell
    Pedro Ontaneda
    [J]. Geometric and Functional Analysis, 2010, 20 : 1397 - 1430
  • [27] Some Remarks on Teichmüller Spaces and Modular Groups
    Yun HU Department of Mathematics
    [J]. Acta Mathematica Sinica,English Series, 2009, 25 (08) : 1289 - 1296
  • [28] Augmented Teichmuller spaces and orbifolds
    Hinich, Vladimir
    Vaintrob, Arkady
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2010, 16 (03): : 533 - 629
  • [29] Rigidity of groups of circle diffeomorphisms and teichmüller spaces
    Katsuhiko Matsuzaki
    [J]. Journal d'Analyse Mathématique, 2020, 140 : 511 - 548
  • [30] Some remarks on Teichmüller spaces and modular groups
    Yun Hu
    [J]. Acta Mathematica Sinica, English Series, 2009, 25 : 1289 - 1296