Teichmüller Spaces and Negatively Curved Fiber Bundles

被引:1
|
作者
Tom Farrell
Pedro Ontaneda
机构
[1] SUNY,
来源
关键词
Space of Riemannian metrics; negative curvature; pseudoisotopies; bundle theories; 58D27; 58D17; 57N37; 53C20; 57R19;
D O I
暂无
中图分类号
学科分类号
摘要
In the first part of the paper we introduce the theory of bundles with negatively curved fibers. For a space X there is a forgetful map FX between bundle theories over X, which assigns to a bundle with negatively curved fibers over X its subjacent smooth bundle. Our main result states that, for certain k-spheres \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{S}^k}$$\end{document}, the forgetful map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F_{\mathbb{S}^k}}$$\end{document} is not one-to-one. This result follows from Theorem A, which proves that the quotient map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{MET}^{\,\,sec <0 }(M)\rightarrow\mathcal{T}^{\,\,sec <0 }(M)}$$\end{document} is not trivial at some homotopy levels, provided the hyperbolic manifold M satisfies certain conditions. Here \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{MET}^{\,\,sec <0 }(M)}$$\end{document} is the space of negatively curved metrics on M and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}^{\,\,sec <0 }(M) = \mathcal{MET}^{\,\,sec <0 }(M)/ {\rm DIFF}_0(M)}$$\end{document} is, as defined in [FO2], the Teichmüller space of negatively curved metrics on M. In particular we conclude that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}^{\,\,sec <0 }(M)}$$\end{document} is, in general, not connected. Two remarks: (1) the nontrivial elements in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\pi_{k}\mathcal{MET}^{\,\,sec <0 }(M)}$$\end{document} constructed in [FO3] have trivial image by the map induced by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{MET}^{\,\,sec <0 }(M)\rightarrow\mathcal{T}^{\,\,sec <0 }(M)}$$\end{document} ; (2) the nonzero classes in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\pi_{k}\mathcal{T}^{\,\,sec <0 }(M)}$$\end{document} constructed in [FO2] are not in the image of the map induced by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{MET}^{\,\,sec <0 }(M)\rightarrow\mathcal{T}^{\,\,sec <0 }(M)}$$\end{document} ; the nontrivial classes in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\pi_{k}\mathcal{T}^{\,\,sec <0 }(M)}$$\end{document} given here, besides coming from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{MET}^{\,\,sec <0 }(M)}$$\end{document} and being harder to construct, have a different nature and genesis: the former classes – given in [FO2] – come from the existence of exotic spheres, while the latter classes – given here – arise from the non-triviality and structure of certain homotopy groups of the space of pseudo-isotopies of the circle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{S}^1}$$\end{document}. The strength of the new techniques used here allowed us to prove also a homology version of Theorem A, which is given in Theorem B.
引用
收藏
页码:1397 / 1430
页数:33
相关论文
共 50 条