On angles in Teichmüller spaces

被引:1
|
作者
Yun Hu
Yuliang Shen
机构
[1] Soochow University,Department of Mathematics
来源
Mathematische Zeitschrift | 2014年 / 277卷
关键词
Teichmüller space; Geodesic segment; Angle; Beltrami coefficient; Primary 32G15; Secondary 30C62; 30F60;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the existence of the angle between two curves in Teichmüller spaces and show that, in any infinite dimensional Teichmüller space, there exist infinitely many geodesic triangles each of which has the same three vertices and satisfies the property that its three sides have the same and arbitrarily given length while its three angles are equal to any given three possibly different numbers from 0 to π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}. This implies that the sum of three angles of a geodesic triangle may be equal to any given number from 0 to 3π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\pi $$\end{document} in an infinite dimensional Teichmüller space.
引用
收藏
页码:181 / 193
页数:12
相关论文
共 50 条