Augmented Teichmüller spaces and orbifolds

被引:0
|
作者
Vladimir Hinich
Arkady Vaintrob
机构
[1] University of Haifa,Department of Mathematics
[2] University of Oregon,Department of Mathematics
来源
Selecta Mathematica | 2010年 / 16卷
关键词
Primary 32G15; Secondary 57R18; 55N32;
D O I
暂无
中图分类号
学科分类号
摘要
We study complex analytic properties of the augmented Teichmüller spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\mathcal{T}}_{g,n}}$$\end{document} obtained by adding to the classical Teichmüller spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}_{g,n}}$$\end{document} points corresponding to Riemann surfaces with nodal singularities. Unlike \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}_{g,n}}$$\end{document}, the space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\mathcal{T}}_{g,n}}$$\end{document} is not a complex manifold (it is not even locally compact). We prove, however, that the quotient of the augmented Teichmüller space by any finite index subgroup of the Teichmüller modular group has a canonical structure of a complex orbifold. Using this structure, we construct natural maps from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\mathcal{T}}}$$\end{document} to stacks of admissible coverings of stable Riemann surfaces. This result is important for understanding the cup-product in stringy orbifold cohomology. We also establish some new technical results from the general theory of orbifolds which may be of independent interest.
引用
收藏
页码:533 / 629
页数:96
相关论文
共 50 条
  • [1] Teichmüller Spaces and Function Spaces
    郭辉
    [J]. 数学进展, 1998, (01) : 83 - 84
  • [2] On angles in Teichmüller spaces
    Yun Hu
    Yuliang Shen
    [J]. Mathematische Zeitschrift, 2014, 277 : 181 - 193
  • [3] Integrable Teichmüller spaces
    郭辉
    [J]. Science China Mathematics, 2000, (01) : 47 - 58
  • [4] Integrable Teichmüller spaces
    Hui Guo
    [J]. Science in China Series A: Mathematics, 2000, 43 : 47 - 58
  • [5] Convexity and Teichmüller spaces
    Krushkal S.L.
    [J]. Lobachevskii Journal of Mathematics, 2017, 38 (2) : 307 - 314
  • [6] Noded Teichmüller spaces
    Rubén A. Hidalgo
    Alexander Vasil'ev
    [J]. Journal d’Analyse Mathématique, 2006, 99 : 89 - 107
  • [7] Teichmüller spaces and holomorphic motions
    Sudeb Mitra
    [J]. Journal d’Analyse Mathématique, 2000, 81 : 1 - 33
  • [8] On locally quasiconformal Teichmüller spaces
    Alastair Fletcher
    Zemin Zhou
    [J]. manuscripta mathematica, 2021, 165 : 105 - 119
  • [9] On holomorphic sections in Teichmüller spaces
    Ming Feng Sun
    Yu Liang Shen
    [J]. Acta Mathematica Sinica, English Series, 2009, 25 : 2023 - 2034
  • [10] Holomorphic Contractibility of Teichmüller Spaces
    Samuel L. Krushkal
    [J]. Complex Analysis and Operator Theory, 2019, 13 : 2829 - 2838