Isometrically embedded polydisks in infinite dimensional Teichmüller spaces

被引:20
|
作者
Clifford J. Earle
Zhong Li
机构
[1] Cornell University,Department of Mathematics, White Hall
[2] Peking University,Department of Mathematics
来源
The Journal of Geometric Analysis | 1999年 / 9卷 / 1期
关键词
32G15; 30C62; 30C75; Riemann surface; Teichmüller metric; Kobayashi metric; polydisk;
D O I
10.1007/BF02923088
中图分类号
学科分类号
摘要
We define isometric holomorphic embeddings of the infinite dimensional polydisk D∞ in any infinite dimensional Teichmüller space. These embeddings provide simple new proofs that the Teichmüller metric on any infinite dimensional Teichmüller space is non-differentiable and has arbitrarily short simple closed geodesics. They also lead to a complete characterization of the points in Teichmüller space that lie on more than one straight line through the basepoint.
引用
收藏
页码:51 / 71
页数:20
相关论文
共 50 条