On Semi-classical Limit of Spatially Homogeneous Quantum Boltzmann Equation: Weak Convergence

被引:0
|
作者
Ling-Bing He
Xuguang Lu
Mario Pulvirenti
机构
[1] Tsinghua University,Department of Mathematical Sciences
[2] Università di Roma La Sapienza,Dipartimento di Matematica
[3] Università dell’Aquila,International Research Center M and MOCS
[4] Palazzo Caetani,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
It is expected in physics that the homogeneous quantum Boltzmann equation with Fermi–Dirac or Bose–Einstein statistics and with Maxwell–Boltzmann operator (neglecting effect of the statistics) for the weak coupled gases will converge to the homogeneous Fokker–Planck–Landau equation as the Planck constant ħ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar $$\end{document} tends to zero. In this paper and the upcoming work (He et al. in On semi-classical limit of spatially homogeneous quantum Boltzmann equation: asymptotic expansion, preprint), we will provide a mathematical justification on this semi-classical limit. Key ingredients into the proofs are the new framework to catch the weak projection gradient, which is motivated by Villani (Arch Rational Mech Anal 143(3):273–307, 1998) to identify the H-solutions for Fokker–Planck–Landau equation, and the symmetric structure inside the cubic terms of the collision operators.
引用
收藏
页码:143 / 223
页数:80
相关论文
共 50 条
  • [1] On Semi-classical Limit of Spatially Homogeneous Quantum Boltzmann Equation: Weak Convergence
    He, Ling-Bing
    Lu, Xuguang
    Pulvirenti, Mario
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 386 (01) : 143 - 223
  • [2] Global weak solutions to the compressible quantum Navier-Stokes equation and its semi-classical limit
    Lacroix -Violet, Ingrid
    Vasseur, Alexis
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 114 : 191 - 210
  • [3] On the semi-classical limit for the nonlinear Schrodinger equation
    Carles, Remi
    [J]. STATIONARY AND TIME DEPENDENT GROSS-PITAEVSKII EQUATIONS, 2008, 473 : 105 - 127
  • [4] Semi-classical limit of relativistic quantum mechanics
    L. Kocis
    [J]. Pramana, 2005, 65 : 147 - 152
  • [5] Semi-classical Limit for the Quantum Zakharov System
    Fang, Yung-Fu
    Kuo, Hung-Wen
    Shih, Hsi-Wei
    Wang, Kuan-Hsiang
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (04): : 925 - 949
  • [6] ON SEMI-CLASSICAL LIMIT OF NONLINEAR QUANTUM SCATTERING
    Carles, Remi
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2016, 49 (03): : 711 - 756
  • [7] Semi-classical limit of relativistic quantum mechanics
    Kocis, L
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2005, 65 (01): : 147 - 152
  • [8] SEMI-CLASSICAL RELATIVITY - THE WEAK-FIELD LIMIT
    HOROWITZ, GT
    [J]. PHYSICAL REVIEW D, 1980, 21 (06): : 1445 - 1461
  • [9] Semi-classical Limit of Quantum Free Energy Minimizers for the Gravitational Hartree Equation
    Woocheol Choi
    Younghun Hong
    Jinmyoung Seok
    [J]. Archive for Rational Mechanics and Analysis, 2021, 239 : 783 - 829
  • [10] Semi-classical Limit of Quantum Free Energy Minimizers for the Gravitational Hartree Equation
    Choi, Woocheol
    Hong, Younghun
    Seok, Jinmyoung
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 239 (02) : 783 - 829