On Semi-classical Limit of Spatially Homogeneous Quantum Boltzmann Equation: Weak Convergence

被引:0
|
作者
Ling-Bing He
Xuguang Lu
Mario Pulvirenti
机构
[1] Tsinghua University,Department of Mathematical Sciences
[2] Università di Roma La Sapienza,Dipartimento di Matematica
[3] Università dell’Aquila,International Research Center M and MOCS
[4] Palazzo Caetani,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
It is expected in physics that the homogeneous quantum Boltzmann equation with Fermi–Dirac or Bose–Einstein statistics and with Maxwell–Boltzmann operator (neglecting effect of the statistics) for the weak coupled gases will converge to the homogeneous Fokker–Planck–Landau equation as the Planck constant ħ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar $$\end{document} tends to zero. In this paper and the upcoming work (He et al. in On semi-classical limit of spatially homogeneous quantum Boltzmann equation: asymptotic expansion, preprint), we will provide a mathematical justification on this semi-classical limit. Key ingredients into the proofs are the new framework to catch the weak projection gradient, which is motivated by Villani (Arch Rational Mech Anal 143(3):273–307, 1998) to identify the H-solutions for Fokker–Planck–Landau equation, and the symmetric structure inside the cubic terms of the collision operators.
引用
收藏
页码:143 / 223
页数:80
相关论文
共 50 条
  • [41] STABILITY AND EXPONENTIAL CONVERGENCE IN L(P) FOR THE SPATIALLY HOMOGENEOUS BOLTZMANN-EQUATION
    WENNBERG, B
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (08) : 935 - 964
  • [42] SPATIALLY HOMOGENEOUS SOLUTIONS OF BOLTZMANN EQUATION
    FROHN, A
    [J]. PHYSICS OF FLUIDS, 1968, 11 (10) : 2108 - &
  • [43] ASYMPTOTIC STABILITY AND SEMI-CLASSICAL LIMIT FOR BIPOLAR QUANTUM HYDRODYNAMIC MODEL
    Hu, Haifeng
    Mei, Ming
    Zhang, Kaijun
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (08) : 2331 - 2371
  • [44] On the Convergence to Equilibrium for the Spatially Homogeneous Boltzmann Equation for Fermi-Dirac Particles
    Liu, Bocheng
    Lu, Xuguang
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (08)
  • [45] Curvature-spin coupling from the semi-classical limit of the Dirac equation
    Cianfrani, Francesco
    Montani, Giovanni
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (08): : 1274 - 1277
  • [46] Semi-classical states for the Choquard equation
    Vitaly Moroz
    Jean Van Schaftingen
    [J]. Calculus of Variations and Partial Differential Equations, 2015, 52 : 199 - 235
  • [47] Semi-Classical Limit for Radial Non-Linear Schrödinger Equation
    Rodrigo Castro
    Patricio L. Felmer
    [J]. Communications in Mathematical Physics, 2005, 256 : 411 - 435
  • [48] Semi-classical states for the Choquard equation
    Moroz, Vitaly
    Van Schaftingen, Jean
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 52 (1-2) : 199 - 235
  • [49] CONVERGENCE OF THE SEMI-CLASSICAL PERIODIC ORBIT EXPANSION
    ECKHARDT, B
    AURELL, E
    [J]. EUROPHYSICS LETTERS, 1989, 9 (06): : 509 - 512
  • [50] A semi-classical limit of the gauge/string correspondence
    Gubser, SS
    Klebanov, IR
    Polyakov, AM
    [J]. NUCLEAR PHYSICS B, 2002, 636 (1-2) : 99 - 114