Semi-classical Limit for the Quantum Zakharov System

被引:7
|
作者
Fang, Yung-Fu [1 ]
Kuo, Hung-Wen [1 ]
Shih, Hsi-Wei [1 ]
Wang, Kuan-Hsiang [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Math, 1 Dasyue Rd, Tainan 70101, Taiwan
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2019年 / 23卷 / 04期
关键词
quantum Zakharov system; semi-classical limit; quantum parameter; GLOBAL WELL-POSEDNESS; ENERGY; EXISTENCE; EQUATIONS;
D O I
10.11650/tjm/180806
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the semi-classical limit for the quantum Zakharov system, that is, the quantum Zakharov system converges to the classical Zakharov system as the quantum parameter goes to zero, including a convergence rate. We improve the results of Guo-Zhang-Guo [11].
引用
收藏
页码:925 / 949
页数:25
相关论文
共 50 条
  • [1] Semi-classical limit of relativistic quantum mechanics
    L. Kocis
    [J]. Pramana, 2005, 65 : 147 - 152
  • [2] ON SEMI-CLASSICAL LIMIT OF NONLINEAR QUANTUM SCATTERING
    Carles, Remi
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2016, 49 (03): : 711 - 756
  • [3] Semi-classical limit of relativistic quantum mechanics
    Kocis, L
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2005, 65 (01): : 147 - 152
  • [4] Stationary phase, quantum mechanics and semi-classical limit
    Rezende, J
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 1996, 8 (08) : 1161 - 1185
  • [5] Some remarks on the semi-classical limit of quantum gravity
    Livine, ER
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2005, 35 (2B) : 442 - 446
  • [6] The combined viscous semi-classical limit for a quantum hydrodynamic system with barrier potential
    Dreher, Michael
    Schnur, Johannes
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 425 (02) : 1113 - 1133
  • [7] Oxidation, reduction and semi-classical limit for quantum matrix geometries
    Felder, Laura O.
    Steinacker, Harold C.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2024, 199
  • [8] Quantum system decomposition for the semi-classical quantum Fourier transform
    Greco, Ben
    Lenahan, Jack
    Huerth, Suzanne
    Medlock, Jan
    Overbey, Lucas A.
    [J]. QUANTUM INFORMATION AND COMPUTATION X, 2012, 8400
  • [9] A semi-classical limit and its applications
    Yu, YL
    [J]. GEOMETRY AND TOPOLOGY OF SUBMANIFOLDS X: DIFFERENTIAL GEOMETRY IN HONOR OF PROF S.S. CHERN, 2000, : 315 - 335
  • [10] Analytic Eigenbranches in the Semi-classical Limit
    Haller, Stefan
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (05)