Semi-classical Limit for the Quantum Zakharov System

被引:7
|
作者
Fang, Yung-Fu [1 ]
Kuo, Hung-Wen [1 ]
Shih, Hsi-Wei [1 ]
Wang, Kuan-Hsiang [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Math, 1 Dasyue Rd, Tainan 70101, Taiwan
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2019年 / 23卷 / 04期
关键词
quantum Zakharov system; semi-classical limit; quantum parameter; GLOBAL WELL-POSEDNESS; ENERGY; EXISTENCE; EQUATIONS;
D O I
10.11650/tjm/180806
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the semi-classical limit for the quantum Zakharov system, that is, the quantum Zakharov system converges to the classical Zakharov system as the quantum parameter goes to zero, including a convergence rate. We improve the results of Guo-Zhang-Guo [11].
引用
收藏
页码:925 / 949
页数:25
相关论文
共 50 条
  • [31] On Semi-classical Limit of Spatially Homogeneous Quantum Boltzmann Equation: Weak Convergence
    Ling-Bing He
    Xuguang Lu
    Mario Pulvirenti
    Communications in Mathematical Physics, 2021, 386 : 143 - 223
  • [32] Semi-Classical Limit and Minimum Decoherence in the Conditional Probability Interpretation of Quantum Mechanics
    Vincent Corbin
    Neil J. Cornish
    Foundations of Physics, 2009, 39 : 474 - 485
  • [33] Semi-classical Limit of Quantum Free Energy Minimizers for the Gravitational Hartree Equation
    Choi, Woocheol
    Hong, Younghun
    Seok, Jinmyoung
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 239 (02) : 783 - 829
  • [34] Semi-Classical Limit and Minimum Decoherence in the Conditional Probability Interpretation of Quantum Mechanics
    Corbin, Vincent
    Cornish, Neil J.
    FOUNDATIONS OF PHYSICS, 2009, 39 (05) : 474 - 485
  • [35] On Semi-classical Limit of Spatially Homogeneous Quantum Boltzmann Equation: Asymptotic Expansion
    Ling-Bing He
    Xuguang Lu
    Mario Pulvirenti
    Yu-Long Zhou
    Communications in Mathematical Physics, 2024, 405 (12)
  • [36] The semi-classical limit of large fermionic systems
    Søren Fournais
    Mathieu Lewin
    Jan Philip Solovej
    Calculus of Variations and Partial Differential Equations, 2018, 57
  • [37] On the semi-classical limit for the nonlinear Schrodinger equation
    Carles, Remi
    STATIONARY AND TIME DEPENDENT GROSS-PITAEVSKII EQUATIONS, 2008, 473 : 105 - 127
  • [38] SEMI-CLASSICAL LIMIT OF AN INFINITE DIMENSIONAL SYSTEM OF NONLINEAR SCHRODINGER EQUATIONS
    Bardos, Claude
    Besse, Nicolas
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2016, 11 (01): : 43 - 61
  • [39] The semi-classical limit of large fermionic systems
    Fournais, Soren
    Lewin, Mathieu
    Solovej, Jan Philip
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (04)
  • [40] SEMI-CLASSICAL APPROXIMATION TO QUANTUM ELECTRODYNAMICS
    RUBIN, M
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (03): : 368 - 368