Semi-classical Limit of Quantum Free Energy Minimizers for the Gravitational Hartree Equation

被引:0
|
作者
Woocheol Choi
Younghun Hong
Jinmyoung Seok
机构
[1] Sungkyunkwan University,Department of Mathematics
[2] Chung-Ang University,Department of Mathematics
[3] Kyonggi University,Department of Mathematics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
For the gravitational Vlasov–Poisson equation, Guo and Rein (Arch Rational Mech Anal 147(3):225–243, 1999) constructed a class of classical isotropic states as minimizers of free energies (or energy-Casimir functionals) under mass constraints. For the quantum counterpart, that is, the gravitational Hartree equation, isotropic states are constructed as free energy minimizers by Aki, Dolbeault and Sparber (Ann Henri Poincaré 12(6):1055–1079, 2011). In this paper, we are concerned with the correspondence between quantum and classical isotropic states. More precisely, we prove that as the Planck constant ħ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar $$\end{document} goes to zero, free energy minimizers for the Hartree equation converge to those for the Vlasov–Poisson equation in terms of potential functions as well as via the Wigner transform and the Töplitz quantization.
引用
收藏
页码:783 / 829
页数:46
相关论文
共 50 条
  • [1] Semi-classical Limit of Quantum Free Energy Minimizers for the Gravitational Hartree Equation
    Choi, Woocheol
    Hong, Younghun
    Seok, Jinmyoung
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 239 (02) : 783 - 829
  • [2] On the semi-classical limit for the nonlinear Schrodinger equation
    Carles, Remi
    [J]. STATIONARY AND TIME DEPENDENT GROSS-PITAEVSKII EQUATIONS, 2008, 473 : 105 - 127
  • [3] Semi-classical limit of relativistic quantum mechanics
    L. Kocis
    [J]. Pramana, 2005, 65 : 147 - 152
  • [4] Semi-classical Limit for the Quantum Zakharov System
    Fang, Yung-Fu
    Kuo, Hung-Wen
    Shih, Hsi-Wei
    Wang, Kuan-Hsiang
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (04): : 925 - 949
  • [5] ON SEMI-CLASSICAL LIMIT OF NONLINEAR QUANTUM SCATTERING
    Carles, Remi
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2016, 49 (03): : 711 - 756
  • [6] Semi-classical limit of relativistic quantum mechanics
    Kocis, L
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2005, 65 (01): : 147 - 152
  • [7] On Semi-classical Limit of Spatially Homogeneous Quantum Boltzmann Equation: Weak Convergence
    He, Ling-Bing
    Lu, Xuguang
    Pulvirenti, Mario
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 386 (01) : 143 - 223
  • [8] On Semi-classical Limit of Spatially Homogeneous Quantum Boltzmann Equation: Weak Convergence
    Ling-Bing He
    Xuguang Lu
    Mario Pulvirenti
    [J]. Communications in Mathematical Physics, 2021, 386 : 143 - 223
  • [9] (Semi) classical limit of the Hartree equation with harmonic potential
    Carles, R
    Mauser, NJ
    Stimming, P
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 66 (01) : 29 - 56
  • [10] Semi-classical limit of a Schrodinger equation for a stratified material
    Bechouche, P
    Poupaud, F
    [J]. MONATSHEFTE FUR MATHEMATIK, 2000, 129 (04): : 281 - 301