Semi-classical Limit of Quantum Free Energy Minimizers for the Gravitational Hartree Equation

被引:0
|
作者
Woocheol Choi
Younghun Hong
Jinmyoung Seok
机构
[1] Sungkyunkwan University,Department of Mathematics
[2] Chung-Ang University,Department of Mathematics
[3] Kyonggi University,Department of Mathematics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
For the gravitational Vlasov–Poisson equation, Guo and Rein (Arch Rational Mech Anal 147(3):225–243, 1999) constructed a class of classical isotropic states as minimizers of free energies (or energy-Casimir functionals) under mass constraints. For the quantum counterpart, that is, the gravitational Hartree equation, isotropic states are constructed as free energy minimizers by Aki, Dolbeault and Sparber (Ann Henri Poincaré 12(6):1055–1079, 2011). In this paper, we are concerned with the correspondence between quantum and classical isotropic states. More precisely, we prove that as the Planck constant ħ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar $$\end{document} goes to zero, free energy minimizers for the Hartree equation converge to those for the Vlasov–Poisson equation in terms of potential functions as well as via the Wigner transform and the Töplitz quantization.
引用
收藏
页码:783 / 829
页数:46
相关论文
共 50 条
  • [31] Semi-classical limit for random walks
    Porod, U
    Zelditch, S
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (11) : 5317 - 5355
  • [32] The semi-classical limit with a delta potential
    Cacciapuoti, Claudio
    Fermi, Davide
    Posilicano, Andrea
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (02) : 453 - 489
  • [33] The combined semi-classical and relaxation limit in a quantum hydrodynamic semiconductor model
    Li, Yeping
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2010, 140 : 119 - 134
  • [34] ASYMPTOTIC STABILITY AND SEMI-CLASSICAL LIMIT FOR BIPOLAR QUANTUM HYDRODYNAMIC MODEL
    Hu, Haifeng
    Mei, Ming
    Zhang, Kaijun
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (08) : 2331 - 2371
  • [35] On a classical limit of quantum theory and the non-linear Hartree equation
    Fröhlich, J
    Tsai, TP
    Yau, HT
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, : 57 - 78
  • [36] SEMI-CLASSICAL WAVE PACKET DYNAMICS FOR HARTREE EQUATIONS
    Cao, Pei
    Carles, Remi
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2011, 23 (09) : 933 - 967
  • [37] On a classical limit of quantum theory and the non-linear Hartree equation
    Fröhlich, J
    Tsai, TP
    Yau, HT
    [J]. CONFERENCE MOSHE FLATO 1999, VOL I: QUANTIZATION, DEFORMATIONS, AND SYMMETRIES, 2000, 21 : 189 - 207
  • [38] Curvature-spin coupling from the semi-classical limit of the Dirac equation
    Cianfrani, Francesco
    Montani, Giovanni
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (08): : 1274 - 1277
  • [39] Semi-classical states for the Choquard equation
    Vitaly Moroz
    Jean Van Schaftingen
    [J]. Calculus of Variations and Partial Differential Equations, 2015, 52 : 199 - 235
  • [40] Semi-Classical Limit for Radial Non-Linear Schrödinger Equation
    Rodrigo Castro
    Patricio L. Felmer
    [J]. Communications in Mathematical Physics, 2005, 256 : 411 - 435