The POLARBEAR-2 and Simons Array Focal Plane Fabrication Status

被引:0
|
作者
B. Westbrook
P. A. R. Ade
M. Aguilar
Y. Akiba
K. Arnold
C. Baccigalupi
D. Barron
D. Beck
S. Beckman
A. N. Bender
F. Bianchini
D. Boettger
J. Borrill
S. Chapman
Y. Chinone
G. Coppi
K. Crowley
A. Cukierman
T. de Haan
R. Dünner
M. Dobbs
T. Elleflot
J. Errard
G. Fabbian
S. M. Feeney
C. Feng
G. Fuller
N. Galitzki
A. Gilbert
N. Goeckner-Wald
J. Groh
N. W. Halverson
T. Hamada
M. Hasegawa
M. Hazumi
C. A. Hill
W. Holzapfel
L. Howe
Y. Inoue
G. Jaehnig
A. Jaffe
O. Jeong
D. Kaneko
N. Katayama
B. Keating
R. Keskitalo
T. Kisner
N. Krachmalnicoff
A. Kusaka
M. Le Jeune
机构
[1] University of California,Department of Physics
[2] Cardiff University,School of Physics and Astronomy
[3] Universidad de Chile,Departamento de Fisica, FCFM
[4] The Graduate University for Advanced Studies (SOKENDAI),Space Sciences Laboratory
[5] High Energy Accelerator Research Organization (KEK),AstroParticule et Cosmologie (APC), Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris
[6] International School for Advanced Studies (SISSA),Department of Physics
[7] University of California,High
[8] Sorbonne Paris Cite,Energy Physics Division
[9] University of California,Kavli Institute for Cosmological Physics
[10] Argonne National Laboratory,School of Physics
[11] University of Chicago,Instituto de Astrofisica and Centro de Astro
[12] University of Melbourne,Ingenieria, Facultad de Fisica
[13] Pontificia Universidad Catolica de Chile,Computational Cosmology Center
[14] Lawrence Berkeley National Laboratory,Department of Physics and Atmospheric Science
[15] Dalhousie University,Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS
[16] The University of Tokyo,Physics Division
[17] The University of Manchester,Physics Department
[18] Lawrence Berkeley National Laboratory,Institut d’Astrophysique Spatiale, CNRS (UMR 8617)
[19] McGill University,Center for Computational Astrophysics
[20] Univ. Paris-Sud,Department of Physics and Astronomy
[21] Universite Paris-Saclay,Center for Astrophysics and Space Astronomy
[22] Flatiron Institute,Department of Astrophysical and Planetary Sciences
[23] University of California,Department of Physics
[24] University of Colorado,Astronomical Institute, Graduate School of Science
[25] University of Colorado,Institute of Space and Astronautical Science (ISAS)
[26] University of Colorado,Institute of Physics
[27] Tohoku University,Department of Physics
[28] Japan Aerospace Exploration Agency (JAXA),Department of Physics
[29] Academia Sinica,Radio Astronomy Laboratory
[30] Imperial College London,Observational Cosmology Laboratory, Code 665
[31] The University of Tokyo,Department of Physics and Astronomy
[32] University of California,Department of Physics and Atmospheric Science
[33] NASA Goddard Space Flight Center,DAMTP
[34] University of Sussex,undefined
[35] Dalhousie University,undefined
[36] University of Cambridge,undefined
[37] Kavli Institute for Cosmology Cambridge,undefined
[38] Osaka University,undefined
来源
关键词
CMB; Fabrication; Instrumentation; Detectors; Transition edge sensor; Sinuous antenna; Polarization; Inflation;
D O I
暂无
中图分类号
学科分类号
摘要
We present on the status of POLARBEAR-2 A (PB2-A) focal plane fabrication. The PB2-A is the first of three telescopes in the Simons Array, which is an array of three cosmic microwave background polarization-sensitive telescopes located at the POLARBEAR site in Northern Chile. As the successor to the PB experiment, each telescope and receiver combination is named as PB2-A, PB2-B, and PB2-C. PB2-A and -B will have nearly identical receivers operating at 90 and 150 GHz while PB2-C will house a receiver operating at 220 and 270 GHz. Each receiver contains a focal plane consisting of seven close-hex packed lenslet-coupled sinuous antenna transition edge sensor bolometer arrays. Each array contains 271 dichroic optical pixels, each of which has four TES bolometers for a total of 7588 detectors per receiver. We have produced a set of two types of candidate arrays for PB2-A. The first we call Version 11 (V11) uses a silicon oxide (SiOx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_x$$\end{document}) for the transmission lines and crossover process for orthogonal polarizations. The second we call Version 13 (V13) uses silicon nitride (SiNx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_x$$\end{document}) for the transmission lines and cross-under process for orthogonal polarizations. We have produced enough of each type of array to fully populate the focal plane of the PB2-A receiver. The average wirebond yield for V11 and V13 arrays is 93.2% and 95.6%, respectively. The V11 arrays had a superconducting transition temperature (Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\mathrm{c}$$\end{document}) of 452±15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$452 \pm \,15$$\end{document} mK, a normal resistance (Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_\mathrm{n}$$\end{document}) of 1.25±0.20Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.25 \pm 0.20~\Omega $$\end{document}, and saturation powers of 5.2±1.0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5.2 \pm 1.0$$\end{document} pW and 13±1.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$13 \pm 1.2$$\end{document} pW for the 90 and 150 GHz bands, respectively. The V13 arrays had a superconducting transition temperature (Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\mathrm{c}$$\end{document}) of 456±6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$456 \pm 6$$\end{document} mK, a normal resistance (Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_\mathrm{n}$$\end{document}) of 1.1±0.2Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.1 \pm 0.2~\Omega $$\end{document}, and saturation powers of 10.8±1.8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10.8 \pm 1.8$$\end{document} pW and 22.9±2.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$22.9 \pm 2.6$$\end{document} pW for the 90 and 150 GHz bands, respectively. Production and characterization of arrays for PB2-B are ongoing and are expected to be completed by the summer of 2018. We have fabricated the first three candidate arrays for PB2-C but do not have any characterization results to present at this time.
引用
收藏
页码:758 / 770
页数:12
相关论文
共 50 条
  • [41] Progress in focal plane array technologies
    Rogalski, Antoni
    PROGRESS IN QUANTUM ELECTRONICS, 2012, 36 (2-3) : 342 - 473
  • [42] Focal plane array for the GERB instrument
    Nelms, N
    Butcher, G
    Blake, O
    Cole, R
    Whitford, C
    Holland, A
    DETECTORS AND ASSOCIATED SIGNAL PROCESSING, 2004, 5251 : 136 - 141
  • [43] INFRARED FOCAL PLANE ARRAY TECHNOLOGY
    SCRIBNER, DA
    KRUER, MR
    KILLIANY, JM
    PROCEEDINGS OF THE IEEE, 1991, 79 (01) : 66 - 85
  • [44] Focal plane detector array developments
    Ninkov, Z
    Forrest, WJ
    OPTICAL ENGINEERING, 2002, 41 (06) : 1157 - 1157
  • [45] Fabrication and Characterization of InAs/GaSb Strained Layer Superlattice Infrared Focal Plane Array Detectors
    Chen, Jianxin
    Quan, Li
    Xu, Zhicheng
    Zhou, Yi
    Xu, Jiajia
    Ding, Ruijun
    He, Li
    2013 38TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2013,
  • [46] Design, Fabrication, and Characterization of a Polymer-Based MEMS Uncooled Infrared Focal Plane Array
    Shang, Yuanfang
    Ye, Xiongying
    Wang, Min
    Song, Pengfei
    Feng, Jinyang
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2015, 24 (04) : 1132 - 1141
  • [47] Fabrication and Performance of 1x128 Linear PbS Infrared Focal Plane Array
    Hou Zhi-jin
    Si Jun-jie
    Wang Wei
    Lv Yan-qiu
    Wang Jin-chun
    Chen Xiang-wei
    INTERNATIONAL SYMPOSIUM ON PHOTOELECTRONIC DETECTION AND IMAGING 2013: INFRARED IMAGING AND APPLICATIONS, 2013, 8907
  • [48] A Large-Diameter Cryogenic Rotation Stage for Half-Wave Plate Polarization Modulation on the POLARBEAR-2 Experiment
    Hill, C. A.
    Kusaka, A.
    Barton, P.
    Bixler, B.
    Droster, A. G.
    Flament, M.
    Ganjam, S.
    Jadbabaie, A.
    Jeong, O.
    Lee, A. T.
    Madurowicz, A.
    Matsuda, F. T.
    Matsumura, T.
    Rutkowski, A.
    Sakurai, Y.
    Sponseller, D. R.
    Suzuki, A.
    Tat, R.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2018, 193 (5-6) : 851 - 859
  • [49] A Large-Diameter Cryogenic Rotation Stage for Half-Wave Plate Polarization Modulation on the POLARBEAR-2 Experiment
    C. A. Hill
    A. Kusaka
    P. Barton
    B. Bixler
    A. G. Droster
    M. Flament
    S. Ganjam
    A. Jadbabaie
    O. Jeong
    A. T. Lee
    A. Madurowicz
    F. T. Matsuda
    T. Matsumura
    A. Rutkowski
    Y. Sakurai
    D. R. Sponseller
    A. Suzuki
    R. Tat
    Journal of Low Temperature Physics, 2018, 193 : 851 - 859
  • [50] Simulation of Helical Modulation in a Focal Plane Array
    Vaishnavi, V.
    Priya, V. G.
    Devi, Sharmila A.
    Kumar, Manoj M.
    Venkatesh, S.
    Sundaram, Shanmugha G. A.
    2014 INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND SIGNAL PROCESSING (ICCSP), 2014,