The POLARBEAR-2 and Simons Array Focal Plane Fabrication Status

被引:0
|
作者
B. Westbrook
P. A. R. Ade
M. Aguilar
Y. Akiba
K. Arnold
C. Baccigalupi
D. Barron
D. Beck
S. Beckman
A. N. Bender
F. Bianchini
D. Boettger
J. Borrill
S. Chapman
Y. Chinone
G. Coppi
K. Crowley
A. Cukierman
T. de Haan
R. Dünner
M. Dobbs
T. Elleflot
J. Errard
G. Fabbian
S. M. Feeney
C. Feng
G. Fuller
N. Galitzki
A. Gilbert
N. Goeckner-Wald
J. Groh
N. W. Halverson
T. Hamada
M. Hasegawa
M. Hazumi
C. A. Hill
W. Holzapfel
L. Howe
Y. Inoue
G. Jaehnig
A. Jaffe
O. Jeong
D. Kaneko
N. Katayama
B. Keating
R. Keskitalo
T. Kisner
N. Krachmalnicoff
A. Kusaka
M. Le Jeune
机构
[1] University of California,Department of Physics
[2] Cardiff University,School of Physics and Astronomy
[3] Universidad de Chile,Departamento de Fisica, FCFM
[4] The Graduate University for Advanced Studies (SOKENDAI),Space Sciences Laboratory
[5] High Energy Accelerator Research Organization (KEK),AstroParticule et Cosmologie (APC), Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris
[6] International School for Advanced Studies (SISSA),Department of Physics
[7] University of California,High
[8] Sorbonne Paris Cite,Energy Physics Division
[9] University of California,Kavli Institute for Cosmological Physics
[10] Argonne National Laboratory,School of Physics
[11] University of Chicago,Instituto de Astrofisica and Centro de Astro
[12] University of Melbourne,Ingenieria, Facultad de Fisica
[13] Pontificia Universidad Catolica de Chile,Computational Cosmology Center
[14] Lawrence Berkeley National Laboratory,Department of Physics and Atmospheric Science
[15] Dalhousie University,Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS
[16] The University of Tokyo,Physics Division
[17] The University of Manchester,Physics Department
[18] Lawrence Berkeley National Laboratory,Institut d’Astrophysique Spatiale, CNRS (UMR 8617)
[19] McGill University,Center for Computational Astrophysics
[20] Univ. Paris-Sud,Department of Physics and Astronomy
[21] Universite Paris-Saclay,Center for Astrophysics and Space Astronomy
[22] Flatiron Institute,Department of Astrophysical and Planetary Sciences
[23] University of California,Department of Physics
[24] University of Colorado,Astronomical Institute, Graduate School of Science
[25] University of Colorado,Institute of Space and Astronautical Science (ISAS)
[26] University of Colorado,Institute of Physics
[27] Tohoku University,Department of Physics
[28] Japan Aerospace Exploration Agency (JAXA),Department of Physics
[29] Academia Sinica,Radio Astronomy Laboratory
[30] Imperial College London,Observational Cosmology Laboratory, Code 665
[31] The University of Tokyo,Department of Physics and Astronomy
[32] University of California,Department of Physics and Atmospheric Science
[33] NASA Goddard Space Flight Center,DAMTP
[34] University of Sussex,undefined
[35] Dalhousie University,undefined
[36] University of Cambridge,undefined
[37] Kavli Institute for Cosmology Cambridge,undefined
[38] Osaka University,undefined
来源
关键词
CMB; Fabrication; Instrumentation; Detectors; Transition edge sensor; Sinuous antenna; Polarization; Inflation;
D O I
暂无
中图分类号
学科分类号
摘要
We present on the status of POLARBEAR-2 A (PB2-A) focal plane fabrication. The PB2-A is the first of three telescopes in the Simons Array, which is an array of three cosmic microwave background polarization-sensitive telescopes located at the POLARBEAR site in Northern Chile. As the successor to the PB experiment, each telescope and receiver combination is named as PB2-A, PB2-B, and PB2-C. PB2-A and -B will have nearly identical receivers operating at 90 and 150 GHz while PB2-C will house a receiver operating at 220 and 270 GHz. Each receiver contains a focal plane consisting of seven close-hex packed lenslet-coupled sinuous antenna transition edge sensor bolometer arrays. Each array contains 271 dichroic optical pixels, each of which has four TES bolometers for a total of 7588 detectors per receiver. We have produced a set of two types of candidate arrays for PB2-A. The first we call Version 11 (V11) uses a silicon oxide (SiOx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_x$$\end{document}) for the transmission lines and crossover process for orthogonal polarizations. The second we call Version 13 (V13) uses silicon nitride (SiNx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_x$$\end{document}) for the transmission lines and cross-under process for orthogonal polarizations. We have produced enough of each type of array to fully populate the focal plane of the PB2-A receiver. The average wirebond yield for V11 and V13 arrays is 93.2% and 95.6%, respectively. The V11 arrays had a superconducting transition temperature (Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\mathrm{c}$$\end{document}) of 452±15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$452 \pm \,15$$\end{document} mK, a normal resistance (Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_\mathrm{n}$$\end{document}) of 1.25±0.20Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.25 \pm 0.20~\Omega $$\end{document}, and saturation powers of 5.2±1.0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5.2 \pm 1.0$$\end{document} pW and 13±1.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$13 \pm 1.2$$\end{document} pW for the 90 and 150 GHz bands, respectively. The V13 arrays had a superconducting transition temperature (Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\mathrm{c}$$\end{document}) of 456±6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$456 \pm 6$$\end{document} mK, a normal resistance (Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_\mathrm{n}$$\end{document}) of 1.1±0.2Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.1 \pm 0.2~\Omega $$\end{document}, and saturation powers of 10.8±1.8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10.8 \pm 1.8$$\end{document} pW and 22.9±2.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$22.9 \pm 2.6$$\end{document} pW for the 90 and 150 GHz bands, respectively. Production and characterization of arrays for PB2-B are ongoing and are expected to be completed by the summer of 2018. We have fabricated the first three candidate arrays for PB2-C but do not have any characterization results to present at this time.
引用
收藏
页码:758 / 770
页数:12
相关论文
共 50 条
  • [31] Focal plane array hybridization
    Pal, R
    Choudhary, PK
    Basu, PK
    Warrier, AVR
    SEMICONDUCTOR DEVICES, 1996, 2733 : 205 - 207
  • [32] Design and performance of a gain calibration system for the POLARBEAR-2a receiver system at the Simons Array cosmic microwave background experiment
    Kaneko, Daisuke
    Takatori, Sayuri
    Hasegawa, Masaya
    Hazumi, Masashi
    Inoue, Yuki
    Jeong, Oliver
    Katayama, Nobuhiko
    Lee, Adrian T.
    Matsuda, Frederick
    Nishino, Haruki
    Siritanasak, Praween
    Suzuki, Aritoki
    Takakura, Satoru
    Tomaru, Takayuki
    JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS, 2024, 10 (01)
  • [33] Inductively coupled plasma etching for large format HgCdTe focal plane array fabrication
    Smith, EPG
    Venzor, GM
    Newton, MD
    Liguori, MV
    Gleason, JK
    Bornfreund, RE
    Johnson, SM
    Benson, JD
    Stoltz, AJ
    Varesi, JB
    Dinan, JH
    Radford, WA
    JOURNAL OF ELECTRONIC MATERIALS, 2005, 34 (06) : 746 - 753
  • [34] Study on Defective Elements from Indium Bump Preparation in Focal Plane Array Fabrication
    Hou, Zhijin
    Fu, Li
    Si, Junjie
    Wang, Wei
    Lv, Yanqiu
    Lu, Zhengxiong
    Wang, Jinchun
    INFRARED TECHNOLOGY AND APPLICATIONS, AND ROBOT SENSING AND ADVANCED CONTROL, 2016, 10157
  • [35] Inductively coupled plasma etching for large format HgCdTe focal plane array fabrication
    E. P. G. Smith
    G. M. Venzor
    M. D. Newton
    M. V. Liguori
    J. K. Gleason
    R. E. Bornfreund
    S. M. Johnson
    J. D. Benson
    A. J. Stoltz
    J. B. Varesi
    J. H. Dinan
    W. A. Radford
    Journal of Electronic Materials, 2005, 34 : 746 - 753
  • [36] Adaptation of frequency-domain readout for Transition Edge Sensor bolometers for the POLARBEAR-2 Cosmic Microwave Background experiment
    Hattori, Kaori
    Arnold, Kam
    Barron, Darcy
    Dobbs, Matt
    de Haan, Tijmen
    Harrington, Nicholas
    Hasegawa, Masaya
    Hazumi, Masashi
    Holzapfel, William L.
    Keating, Brian
    Lee, Adrian T.
    Morii, Hideki
    Myers, Michael J.
    Smecher, Graeme
    Suzuki, Aritoki
    Tomaru, Takayuki
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2013, 732 : 299 - 302
  • [37] Assembly development for the Simons Observatory focal plane readout module
    Healy, Erin
    Ali, Aamir M.
    Arnold, Kam
    Austermann, Jason E.
    Beall, James A.
    Bruno, Sarah Marie
    Choi, Steve K.
    Connors, Jake
    Cothard, Nicholas F.
    Dober, Bradley
    Duff, Shannon M.
    Galitzki, Nicholas
    Hilton, Gene
    Ho, Shuay-Pwu Patty
    Hubmayr, Johannes
    Johnson, Bradley R.
    Li, Yaqiong
    Link, Michael J.
    Lucas, Tammy J.
    McCarrick, Heather
    Niemack, Michael D.
    Silva-Feaver, Maximiliano
    Sonka, Rita F.
    Staggs, Suzanne
    Vavagiakis, Eve M.
    Vissers, Michael R.
    Wang, Yuhan
    Westbrook, Benjamin
    Wollack, Edward J.
    Xu, Zhilei
    Zheng, Kaiwen
    MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY X, 2020, 11453
  • [38] Focal plane array technologies for SISCAM
    Matsuo, Hiroshi
    Nagata, Hirohisa
    Kobayashi, Jun
    Ariyoshi, Seiichiro
    Fujiwara, Mikio
    Mori, Yuko
    Murakoshi, Yu
    Nakahashi, Misato
    Otani, Chiko
    2007 JOINT 32ND INTERNATIONAL CONFERENCE ON INFRARED AND MILLIMETER WAVES AND 15TH INTERNATIONAL CONFERENCE ON TERAHERTZ ELECTRONICS, VOLS 1 AND 2, 2007, : 111 - +
  • [39] Apertif, a focal plane array for the WSRT
    Verheijen, M. A. W.
    Oosterloo, T. A.
    van Cappellen, W. A.
    Bakker, L.
    Ivashina, M. V.
    van der Hulst, J. M.
    EVOLUTION OF GALAXIES THROUGH THE NEUTRAL HYDROGEN WINDOW, 2008, 1035 : 265 - +
  • [40] Wideband Focal Plane Connected Array
    Dubok, A.
    Al-Rawi, A.
    Herben, M. H. A. J.
    Smolders, A. B.
    2016 10TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2016,