The POLARBEAR-2 and Simons Array Focal Plane Fabrication Status

被引:0
|
作者
B. Westbrook
P. A. R. Ade
M. Aguilar
Y. Akiba
K. Arnold
C. Baccigalupi
D. Barron
D. Beck
S. Beckman
A. N. Bender
F. Bianchini
D. Boettger
J. Borrill
S. Chapman
Y. Chinone
G. Coppi
K. Crowley
A. Cukierman
T. de Haan
R. Dünner
M. Dobbs
T. Elleflot
J. Errard
G. Fabbian
S. M. Feeney
C. Feng
G. Fuller
N. Galitzki
A. Gilbert
N. Goeckner-Wald
J. Groh
N. W. Halverson
T. Hamada
M. Hasegawa
M. Hazumi
C. A. Hill
W. Holzapfel
L. Howe
Y. Inoue
G. Jaehnig
A. Jaffe
O. Jeong
D. Kaneko
N. Katayama
B. Keating
R. Keskitalo
T. Kisner
N. Krachmalnicoff
A. Kusaka
M. Le Jeune
机构
[1] University of California,Department of Physics
[2] Cardiff University,School of Physics and Astronomy
[3] Universidad de Chile,Departamento de Fisica, FCFM
[4] The Graduate University for Advanced Studies (SOKENDAI),Space Sciences Laboratory
[5] High Energy Accelerator Research Organization (KEK),AstroParticule et Cosmologie (APC), Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris
[6] International School for Advanced Studies (SISSA),Department of Physics
[7] University of California,High
[8] Sorbonne Paris Cite,Energy Physics Division
[9] University of California,Kavli Institute for Cosmological Physics
[10] Argonne National Laboratory,School of Physics
[11] University of Chicago,Instituto de Astrofisica and Centro de Astro
[12] University of Melbourne,Ingenieria, Facultad de Fisica
[13] Pontificia Universidad Catolica de Chile,Computational Cosmology Center
[14] Lawrence Berkeley National Laboratory,Department of Physics and Atmospheric Science
[15] Dalhousie University,Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS
[16] The University of Tokyo,Physics Division
[17] The University of Manchester,Physics Department
[18] Lawrence Berkeley National Laboratory,Institut d’Astrophysique Spatiale, CNRS (UMR 8617)
[19] McGill University,Center for Computational Astrophysics
[20] Univ. Paris-Sud,Department of Physics and Astronomy
[21] Universite Paris-Saclay,Center for Astrophysics and Space Astronomy
[22] Flatiron Institute,Department of Astrophysical and Planetary Sciences
[23] University of California,Department of Physics
[24] University of Colorado,Astronomical Institute, Graduate School of Science
[25] University of Colorado,Institute of Space and Astronautical Science (ISAS)
[26] University of Colorado,Institute of Physics
[27] Tohoku University,Department of Physics
[28] Japan Aerospace Exploration Agency (JAXA),Department of Physics
[29] Academia Sinica,Radio Astronomy Laboratory
[30] Imperial College London,Observational Cosmology Laboratory, Code 665
[31] The University of Tokyo,Department of Physics and Astronomy
[32] University of California,Department of Physics and Atmospheric Science
[33] NASA Goddard Space Flight Center,DAMTP
[34] University of Sussex,undefined
[35] Dalhousie University,undefined
[36] University of Cambridge,undefined
[37] Kavli Institute for Cosmology Cambridge,undefined
[38] Osaka University,undefined
来源
关键词
CMB; Fabrication; Instrumentation; Detectors; Transition edge sensor; Sinuous antenna; Polarization; Inflation;
D O I
暂无
中图分类号
学科分类号
摘要
We present on the status of POLARBEAR-2 A (PB2-A) focal plane fabrication. The PB2-A is the first of three telescopes in the Simons Array, which is an array of three cosmic microwave background polarization-sensitive telescopes located at the POLARBEAR site in Northern Chile. As the successor to the PB experiment, each telescope and receiver combination is named as PB2-A, PB2-B, and PB2-C. PB2-A and -B will have nearly identical receivers operating at 90 and 150 GHz while PB2-C will house a receiver operating at 220 and 270 GHz. Each receiver contains a focal plane consisting of seven close-hex packed lenslet-coupled sinuous antenna transition edge sensor bolometer arrays. Each array contains 271 dichroic optical pixels, each of which has four TES bolometers for a total of 7588 detectors per receiver. We have produced a set of two types of candidate arrays for PB2-A. The first we call Version 11 (V11) uses a silicon oxide (SiOx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_x$$\end{document}) for the transmission lines and crossover process for orthogonal polarizations. The second we call Version 13 (V13) uses silicon nitride (SiNx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_x$$\end{document}) for the transmission lines and cross-under process for orthogonal polarizations. We have produced enough of each type of array to fully populate the focal plane of the PB2-A receiver. The average wirebond yield for V11 and V13 arrays is 93.2% and 95.6%, respectively. The V11 arrays had a superconducting transition temperature (Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\mathrm{c}$$\end{document}) of 452±15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$452 \pm \,15$$\end{document} mK, a normal resistance (Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_\mathrm{n}$$\end{document}) of 1.25±0.20Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.25 \pm 0.20~\Omega $$\end{document}, and saturation powers of 5.2±1.0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5.2 \pm 1.0$$\end{document} pW and 13±1.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$13 \pm 1.2$$\end{document} pW for the 90 and 150 GHz bands, respectively. The V13 arrays had a superconducting transition temperature (Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\mathrm{c}$$\end{document}) of 456±6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$456 \pm 6$$\end{document} mK, a normal resistance (Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_\mathrm{n}$$\end{document}) of 1.1±0.2Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.1 \pm 0.2~\Omega $$\end{document}, and saturation powers of 10.8±1.8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10.8 \pm 1.8$$\end{document} pW and 22.9±2.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$22.9 \pm 2.6$$\end{document} pW for the 90 and 150 GHz bands, respectively. Production and characterization of arrays for PB2-B are ongoing and are expected to be completed by the summer of 2018. We have fabricated the first three candidate arrays for PB2-C but do not have any characterization results to present at this time.
引用
收藏
页码:758 / 770
页数:12
相关论文
共 50 条
  • [21] Fabrication of indium bumps for hybrid infrared focal plane array applications
    Jiang, JT
    Tsao, S
    O'Sullivan, T
    Razeghi, M
    Brown, GJ
    INFRARED PHYSICS & TECHNOLOGY, 2004, 45 (02) : 143 - 151
  • [22] Optimization of Indium Bump Preparation in Infrared Focal Plane Array Fabrication
    Hou Zhijin
    Si Junjie
    Wang Wei
    Wang Haizhen
    Wang Liwen
    INTERNATIONAL SYMPOSIUM ON OPTOELECTRONIC TECHNOLOGY AND APPLICATION 2014: INFRARED TECHNOLOGY AND APPLICATIONS, 2014, 9300
  • [23] Fabrication and Characterization of Frequency Selective Terahertz Focal Plane Array and Camera
    Oulachgar, Hassane
    Paultre, Jacques-Edmond
    Terroux, Marc
    Provencal, Francis
    Fisette, Bruno
    Spisser, Helene
    Berthiaume, Francois
    Paquet, Alex
    Doucet, Michel
    Jacob, Michel
    Marchese, Linda
    Genereux, Francis
    Grenier, Paul
    Alain, Christine
    Bergeron, Alain
    2019 44TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2019,
  • [24] Design and fabrication of an InGaAs focal plane array integrated with linear-array polarization grating
    Sun, Duo
    Feng, Bo
    Yang, Bo
    Li, Tao
    Shao, Xiumei
    Li, Xue
    Chen, Yifang
    OPTICS LETTERS, 2020, 45 (06) : 1559 - 1562
  • [25] Ultra-low noise infrared focal plane array status
    Kozlowski, LJ
    Montroy, J
    Vural, K
    Kleinhans, WE
    INFRARED TECHNOLOGY AND APPLICATIONS XXIV, PTS 1-2, 1998, 3436 : 162 - 171
  • [26] The Broadband Anti-reflection Coated Extended Hemispherical Silicon Lenses for POLARBEAR-2 Experiment
    Siritanasak, P.
    Aleman, C.
    Arnold, K.
    Cukierman, A.
    Hazumi, M.
    Kazemzadeh, K.
    Keating, B.
    Matsumura, T.
    Lee, A. T.
    Lee, C.
    Quealy, E.
    Rosen, D.
    Stebor, N.
    Suzuki, A.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2016, 184 (3-4) : 553 - 558
  • [27] The Broadband Anti-reflection Coated Extended Hemispherical Silicon Lenses for Polarbear-2 Experiment
    P. Siritanasak
    C. Aleman
    K. Arnold
    A. Cukierman
    M. Hazumi
    K. Kazemzadeh
    B. Keating
    T. Matsumura
    A. T. Lee
    C. Lee
    E. Quealy
    D. Rosen
    N. Stebor
    A. Suzuki
    Journal of Low Temperature Physics, 2016, 184 : 553 - 558
  • [28] Design and fabrication of a high sensitivity focal plane array for uncooled IR imaging
    Yu, Xiaomei
    Yi, Yuliang
    Ma, Shenglin
    Liu, Ming
    Liu, Xiaohua
    Dong, Liquan
    Zhao, Yuejin
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2008, 18 (05)
  • [29] Fabrication of freestanding SWCNT networks for fast microbolometric focal plane array sensor
    Cech, Jiri
    Swaminathan, V.
    Wijewarnasuriya, P.
    Currano, Luke J.
    Kovalskiy, Andriy
    Jain, H.
    MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS II, 2010, 7679
  • [30] DESIGN AND FABRICATION OF A SANDWICH FRAMED FOCAL PLANE ARRAY FOR UNCOOLED INFRARED IMAGING
    Zhao, R.
    Ma, W.
    Wang, S.
    Yu, X.
    Feng, Y.
    Zhao, Y.
    2015 TRANSDUCERS - 2015 18TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS), 2015, : 1318 - 1321