The POLARBEAR-2 and Simons Array Focal Plane Fabrication Status

被引:0
|
作者
B. Westbrook
P. A. R. Ade
M. Aguilar
Y. Akiba
K. Arnold
C. Baccigalupi
D. Barron
D. Beck
S. Beckman
A. N. Bender
F. Bianchini
D. Boettger
J. Borrill
S. Chapman
Y. Chinone
G. Coppi
K. Crowley
A. Cukierman
T. de Haan
R. Dünner
M. Dobbs
T. Elleflot
J. Errard
G. Fabbian
S. M. Feeney
C. Feng
G. Fuller
N. Galitzki
A. Gilbert
N. Goeckner-Wald
J. Groh
N. W. Halverson
T. Hamada
M. Hasegawa
M. Hazumi
C. A. Hill
W. Holzapfel
L. Howe
Y. Inoue
G. Jaehnig
A. Jaffe
O. Jeong
D. Kaneko
N. Katayama
B. Keating
R. Keskitalo
T. Kisner
N. Krachmalnicoff
A. Kusaka
M. Le Jeune
机构
[1] University of California,Department of Physics
[2] Cardiff University,School of Physics and Astronomy
[3] Universidad de Chile,Departamento de Fisica, FCFM
[4] The Graduate University for Advanced Studies (SOKENDAI),Space Sciences Laboratory
[5] High Energy Accelerator Research Organization (KEK),AstroParticule et Cosmologie (APC), Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris
[6] International School for Advanced Studies (SISSA),Department of Physics
[7] University of California,High
[8] Sorbonne Paris Cite,Energy Physics Division
[9] University of California,Kavli Institute for Cosmological Physics
[10] Argonne National Laboratory,School of Physics
[11] University of Chicago,Instituto de Astrofisica and Centro de Astro
[12] University of Melbourne,Ingenieria, Facultad de Fisica
[13] Pontificia Universidad Catolica de Chile,Computational Cosmology Center
[14] Lawrence Berkeley National Laboratory,Department of Physics and Atmospheric Science
[15] Dalhousie University,Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS
[16] The University of Tokyo,Physics Division
[17] The University of Manchester,Physics Department
[18] Lawrence Berkeley National Laboratory,Institut d’Astrophysique Spatiale, CNRS (UMR 8617)
[19] McGill University,Center for Computational Astrophysics
[20] Univ. Paris-Sud,Department of Physics and Astronomy
[21] Universite Paris-Saclay,Center for Astrophysics and Space Astronomy
[22] Flatiron Institute,Department of Astrophysical and Planetary Sciences
[23] University of California,Department of Physics
[24] University of Colorado,Astronomical Institute, Graduate School of Science
[25] University of Colorado,Institute of Space and Astronautical Science (ISAS)
[26] University of Colorado,Institute of Physics
[27] Tohoku University,Department of Physics
[28] Japan Aerospace Exploration Agency (JAXA),Department of Physics
[29] Academia Sinica,Radio Astronomy Laboratory
[30] Imperial College London,Observational Cosmology Laboratory, Code 665
[31] The University of Tokyo,Department of Physics and Astronomy
[32] University of California,Department of Physics and Atmospheric Science
[33] NASA Goddard Space Flight Center,DAMTP
[34] University of Sussex,undefined
[35] Dalhousie University,undefined
[36] University of Cambridge,undefined
[37] Kavli Institute for Cosmology Cambridge,undefined
[38] Osaka University,undefined
来源
关键词
CMB; Fabrication; Instrumentation; Detectors; Transition edge sensor; Sinuous antenna; Polarization; Inflation;
D O I
暂无
中图分类号
学科分类号
摘要
We present on the status of POLARBEAR-2 A (PB2-A) focal plane fabrication. The PB2-A is the first of three telescopes in the Simons Array, which is an array of three cosmic microwave background polarization-sensitive telescopes located at the POLARBEAR site in Northern Chile. As the successor to the PB experiment, each telescope and receiver combination is named as PB2-A, PB2-B, and PB2-C. PB2-A and -B will have nearly identical receivers operating at 90 and 150 GHz while PB2-C will house a receiver operating at 220 and 270 GHz. Each receiver contains a focal plane consisting of seven close-hex packed lenslet-coupled sinuous antenna transition edge sensor bolometer arrays. Each array contains 271 dichroic optical pixels, each of which has four TES bolometers for a total of 7588 detectors per receiver. We have produced a set of two types of candidate arrays for PB2-A. The first we call Version 11 (V11) uses a silicon oxide (SiOx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_x$$\end{document}) for the transmission lines and crossover process for orthogonal polarizations. The second we call Version 13 (V13) uses silicon nitride (SiNx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_x$$\end{document}) for the transmission lines and cross-under process for orthogonal polarizations. We have produced enough of each type of array to fully populate the focal plane of the PB2-A receiver. The average wirebond yield for V11 and V13 arrays is 93.2% and 95.6%, respectively. The V11 arrays had a superconducting transition temperature (Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\mathrm{c}$$\end{document}) of 452±15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$452 \pm \,15$$\end{document} mK, a normal resistance (Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_\mathrm{n}$$\end{document}) of 1.25±0.20Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.25 \pm 0.20~\Omega $$\end{document}, and saturation powers of 5.2±1.0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5.2 \pm 1.0$$\end{document} pW and 13±1.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$13 \pm 1.2$$\end{document} pW for the 90 and 150 GHz bands, respectively. The V13 arrays had a superconducting transition temperature (Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\mathrm{c}$$\end{document}) of 456±6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$456 \pm 6$$\end{document} mK, a normal resistance (Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_\mathrm{n}$$\end{document}) of 1.1±0.2Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.1 \pm 0.2~\Omega $$\end{document}, and saturation powers of 10.8±1.8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10.8 \pm 1.8$$\end{document} pW and 22.9±2.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$22.9 \pm 2.6$$\end{document} pW for the 90 and 150 GHz bands, respectively. Production and characterization of arrays for PB2-B are ongoing and are expected to be completed by the summer of 2018. We have fabricated the first three candidate arrays for PB2-C but do not have any characterization results to present at this time.
引用
收藏
页码:758 / 770
页数:12
相关论文
共 50 条
  • [1] The POLARBEAR-2 and Simons Array Focal Plane Fabrication Status
    Westbrook, B.
    Ade, P. A. R.
    Aguilar, M.
    Akiba, Y.
    Arnold, K.
    Baccigalupi, C.
    Barron, D.
    Beck, D.
    Beckman, S.
    Bender, A. N.
    Bianchini, F.
    Boettger, D.
    Borrill, J.
    Chapman, S.
    Chinone, Y.
    Coppi, G.
    Crowley, K.
    Cukierman, A.
    de Haan, T.
    Dunner, R.
    Dobbs, M.
    Elleflot, T.
    Errard, J.
    Fabbian, G.
    Feeney, S. M.
    Feng, C.
    Fuller, G.
    Galitzki, N.
    Gilbert, A.
    Goeckner-Wald, N.
    Groh, J.
    Halverson, N. W.
    Hamada, T.
    Hasegawa, M.
    Hazumi, M.
    Hill, C. A.
    Holzapfel, W.
    Howe, L.
    Inoue, Y.
    Jaehnig, G.
    Jaffe, A.
    Jeong, O.
    Kaneko, D.
    Katayama, N.
    Keating, B.
    Keskitalo, R.
    Kisner, T.
    Krachmalnicoff, N.
    Kusaka, A.
    Le Jeune, M.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2018, 193 (5-6) : 758 - 770
  • [2] The Polarbear-2 and the Simons Array Experiments
    A. Suzuki
    P. Ade
    Y. Akiba
    C. Aleman
    K. Arnold
    C. Baccigalupi
    B. Barch
    D. Barron
    A. Bender
    D. Boettger
    J. Borrill
    S. Chapman
    Y. Chinone
    A. Cukierman
    M. Dobbs
    A. Ducout
    R. Dunner
    T. Elleflot
    J. Errard
    G. Fabbian
    S. Feeney
    C. Feng
    T. Fujino
    G. Fuller
    A. Gilbert
    N. Goeckner-Wald
    J. Groh
    T. De Haan
    G. Hall
    N. Halverson
    T. Hamada
    M. Hasegawa
    K. Hattori
    M. Hazumi
    C. Hill
    W. Holzapfel
    Y. Hori
    L. Howe
    Y. Inoue
    F. Irie
    G. Jaehnig
    A. Jaffe
    O. Jeong
    N. Katayama
    J. Kaufman
    K. Kazemzadeh
    B. Keating
    Z. Kermish
    R. Keskitalo
    T. Kisner
    Journal of Low Temperature Physics, 2016, 184 : 805 - 810
  • [3] The POLARBEAR-2 and the Simons Array Experiments
    Suzuki, A.
    Ade, P.
    Akiba, Y.
    Aleman, C.
    Arnold, K.
    Baccigalupi, C.
    Barch, B.
    Barron, D.
    Bender, A.
    Boettger, D.
    Borrill, J.
    Chapman, S.
    Chinone, Y.
    Cukierman, A.
    Dobbs, M.
    Ducout, A.
    Dunner, R.
    Elleflot, T.
    Errard, J.
    Fabbian, G.
    Feeney, S.
    Feng, C.
    Fujino, T.
    Fuller, G.
    Gilbert, A.
    Goeckner-Wald, N.
    Groh, J.
    Haan, T. De
    Hall, G.
    Halverson, N.
    Hamada, T.
    Hasegawa, M.
    Hattori, K.
    Hazumi, M.
    Hill, C.
    Holzapfel, W.
    Hori, Y.
    Howe, L.
    Inoue, Y.
    Irie, F.
    Jaehnig, G.
    Jaffe, A.
    Jeong, O.
    Katayama, N.
    Kaufman, J.
    Kazemzadeh, K.
    Keating, B.
    Kermish, Z.
    Keskitalo, R.
    Kisner, T.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2016, 184 (3-4) : 805 - 810
  • [4] The POLARBEAR-2 Experiment
    Suzuki, A.
    Ade, P.
    Akiba, Y.
    Aleman, C.
    Arnold, K.
    Atlas, M.
    Barron, D.
    Borrill, J.
    Chapman, S.
    Chinone, Y.
    Cukierman, A.
    Dobbs, M.
    Elleflot, T.
    Errard, J.
    Fabbian, G.
    Feng, G.
    Gilbert, A.
    Grainger, W.
    Halverson, N.
    Hasegawa, M.
    Hattori, K.
    Hazumi, M.
    Holzapfel, W.
    Hori, Y.
    Inoue, Y.
    Jaehnig, G.
    Katayama, N.
    Keating, B.
    Kermish, Z.
    Keskitalo, R.
    Kisner, T.
    Lee, A.
    Matsuda, F.
    Matsumura, T.
    Morii, H.
    Moyerman, S.
    Myers, M.
    Navaroli, M.
    Nishino, H.
    Okamura, T.
    Reichart, C.
    Richards, P.
    Ross, C.
    Rotermund, K.
    Sholl, M.
    Siritanasak, P.
    Smecher, G.
    Stebor, N.
    Stompor, R.
    Suzuki, J.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2014, 176 (5-6) : 719 - 725
  • [5] The POLARBEAR-2 Experiment
    Tomaru, Takayuki
    Hazumi, Masashi
    Lee, Adrian T.
    Ade, Peter
    Arnold, Kam
    Barron, Darcy
    Borrilll, Julian
    Chapman, Scott
    Chinone, Yuji
    Dobbs, Matt
    Errard, Josquin
    Fabbian, Giullo
    Ghribi, Adnan
    Grainger, William
    Halverson, Nils
    Hasegawa, Masaya
    Hattori, Kaori
    Holzapfel, William L.
    Inoue, Yuki
    Ishii, Sou
    Kaneko, Yuta
    Keating, Brian
    Kermish, Zigmund
    Kimura, Nobuhiro
    Kisner, Ted
    Kranz, William
    Matsuda, Frederick
    Matsumura, Tomotake
    Morii, Hideki
    Myers, Michael J.
    Nishino, Haruki
    Okamura, Takahiro
    Quealy, Erin
    Reichardt, Christian L.
    Richards, Paul L.
    Rosen, Darin
    Ross, Colin
    Shimizu, Akie
    Sholl, Michael
    Siritanasak, Praween
    Smith, Peter
    Stebor, Nathan
    Stompor, Radek
    Suzuki, Aritoki
    Suzuki, Jun-ichi
    Takada, Suguru
    Tanaka, Ken-ichi
    Zahn, Oliver
    MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VI, 2012, 8452
  • [6] The POLARBEAR-2 Experiment
    A. Suzuki
    P. Ade
    Y. Akiba
    C. Aleman
    K. Arnold
    M. Atlas
    D. Barron
    J. Borrill
    S. Chapman
    Y. Chinone
    A. Cukierman
    M. Dobbs
    T. Elleflot
    J. Errard
    G. Fabbian
    G. Feng
    A. Gilbert
    W. Grainger
    N. Halverson
    M. Hasegawa
    K. Hattori
    M. Hazumi
    W. Holzapfel
    Y. Hori
    Y. Inoue
    G. Jaehnig
    N. Katayama
    B. Keating
    Z. Kermish
    R. Keskitalo
    T. Kisner
    A. Lee
    F. Matsuda
    T. Matsumura
    H. Morii
    S. Moyerman
    M. Myers
    M. Navaroli
    H. Nishino
    T. Okamura
    C. Reichart
    P. Richards
    C. Ross
    K. Rotermund
    M. Sholl
    P. Siritanasak
    G. Smecher
    N. Stebor
    R. Stompor
    J. Suzuki
    Journal of Low Temperature Physics, 2014, 176 : 719 - 725
  • [7] The bolometric focal plane array of the POLARBEAR CMB experiment
    Arnold, K.
    Ade, P. A. R.
    Anthony, A. E.
    Barron, D.
    Boettger, D.
    Borrill, J.
    Chapman, S.
    Chinone, Y.
    Dobbs, M. A.
    Errard, J.
    Fabbian, G.
    Flanigan, D.
    Fuller, G.
    Ghribi, A.
    Grainger, W.
    Halverson, N.
    Hasegawa, M.
    Hattori, K.
    Hazumi, M.
    Holzapfel, W. L.
    Howard, J.
    Hyland, P.
    Jaffe, A.
    Keating, B.
    Kermish, Z.
    Kisner, T.
    Le Jeune, M.
    Lee, A. T.
    Linder, E.
    Lungu, M.
    Matsuda, F.
    Matsumura, T.
    Miller, N. J.
    Meng, X.
    Morii, H.
    Moyerman, S.
    Myers, M. J.
    Nishino, H.
    Paar, H.
    Quealy, E.
    Reichardt, C.
    Richards, P. L.
    Ross, C.
    Shimizu, A.
    Shimmin, C.
    Shimon, M.
    Sholl, M.
    Siritanasak, P.
    Spieler, H.
    Stebor, N.
    MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VI, 2012, 8452
  • [8] POLARBEAR-2 optical and polarimeter designs
    Matsumura, Tomotake
    Ade, Peter
    Arnold, Kam
    Barron, Darcy
    Borrill, Julian
    Chapman, Scott
    Chinone, Yuji
    Dobbs, Matt
    Errard, Josquin
    Fabbian, Giullo
    Ghribi, Adnan
    Grainger, William
    Halverson, Nils
    Hasegawa, Masaya
    Hattori, Kaori
    Hazumi, Masashi
    Holzapfel, William L.
    Inoue, Yuki
    Ishii, Sou
    Kaneko, Yuta
    Keating, Brian
    Kermish, Zigmund
    Kimura, Nobuhiro
    Kisner, Ted
    Kranz, William
    Lee, Adrian T.
    Matsuda, Frederick
    Morii, Hideki
    Myers, Michael J.
    Nishino, Haruki
    Okamura, Takahiro
    Quealy, Erin
    Reichardtc, Christian
    Richards, Paul L.
    Rosen, Darin
    Ross, Colin
    Shimizu, Akie
    Sholl, Michael
    Siritanasak, Praween
    Smith, Peter
    Stebor, Nathan
    Stompor, Radek
    Suzuki, Aritoki
    Suzuki, Jun-ichi
    Takada, Suguru
    Tanaka, Ken-ichi
    Tomaru, Takayuki
    Zahn, Oliver
    MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VI, 2012, 8452
  • [9] POLARBEAR-2: an instrument for CMB polarization measurements
    Inoue, Y.
    Ade, P.
    Akiba, Y.
    Aleman, C.
    Arnold, K.
    Baccigalupi, C.
    Barch, B.
    Barron, D.
    Bender, A.
    Boettger, D.
    Borrill, J.
    Chapman, S.
    Chinone, Y.
    Cukierman, A.
    de Haan, T.
    Dobbs, M. A.
    Ducout, A.
    Dunner, R.
    Elleflot, T.
    Errard, J.
    Fabbian, G.
    Feeney, S.
    Feng, C.
    Fuller, G.
    Gilbert, A. J.
    Goeckner-Wald, N.
    Groh, J.
    Hall, G.
    Halverson, N.
    Hamada, T.
    Hasegawab, M.
    Hattori, K.
    Hazumi, M.
    Hill, C.
    Holzapfel, W. L.
    Hori, Y.
    Howe, L.
    Irie, F.
    Jaehnig, G.
    Jaffe, A.
    Jeong, O.
    Katayama, N.
    Kaufman, J. P.
    Kazemzadeh, K.
    Keating, B. G.
    Kermish, Z.
    Keskital, R.
    Kisner, T.
    Kusaka, A.
    Le Jeune, M.
    MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VIII, 2016, 9914
  • [10] Development and characterization of the readout system for POLARBEAR-2
    Barronk, D.
    Ade, P. A. R.
    Akiba, Y.
    Aleman, C.
    Arnold, K.
    Atlas, M.
    Bender, A.
    Borrill, J.
    Chapman, S.
    Chinone, Y.
    Cukierman, A.
    Dobbs, M.
    Elleflot, T.
    Errard, J.
    Fabbian, G.
    Feng, G.
    Gilbert, A.
    Halverson, N. W.
    Hasegawa, M.
    Hattori, K.
    Hzumi, M.
    Holzapfel, W. L.
    Hori, Y.
    Inoue, Y.
    Jaehnig, G. C.
    Katayama, N.
    Keating, B.
    Kermish, Z.
    Keskitalo, R.
    Kisner, T.
    Le Jeune, M.
    Lee, A. T.
    Matsuda, F.
    Matsumura, T.
    Morii, H.
    Myers, M. J.
    Navaroli, M.
    Nishino, H.
    Okamura, T.
    Peloton, J.
    Rebeiz, G.
    Reichardt, C. L.
    Richards, P. L.
    Ross, C.
    Sholl, M.
    Siritanasak, P.
    Smecher, G.
    Stebor, N.
    Steinbach, B.
    Stompor, R.
    MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII, 2014, 9153