Bifurcation analysis of a first time-delay chaotic system

被引:0
|
作者
Tianzeng Li
Yu Wang
Xiaofeng Zhou
机构
[1] Sichuan University of Science and Engineering,School of Mathematics and Statistics
[2] Artificial Intelligence Key Laboratory of Sichuan Province,undefined
[3] Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things,undefined
[4] Yellow River Conservancy Technical Institute,undefined
关键词
Bifurcation analysis; Periodicity; Chaos; Hopf bifurcation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the dynamic behavior of the chaotic nonlinear time delay systems of general form x˙(t)=g(x(t),x(t−τ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot{x}(t)=g(x(t),x(t-\tau ))$\end{document}. We carry out stability analysis to identify the parameter zone for which the system shows a stable equilibrium response. Through the bifurcation analysis, we establish that the system shows a stable limit cycle through supercritical Hopf bifurcation beyond certain values of delay and parameters. Next, a numerical simulation of the prototype system is used to show that the system has different behaviors: stability, periodicity and chaos with the variation of delay and other parameters, which demonstrates the validity of our method. We give the single- and two-parameter bifurcation diagrams which are employed to explore the dynamics of the system over the whole parameter space.
引用
下载
收藏
相关论文
共 50 条
  • [41] Parameter estimation for time-delay chaotic system by particle swarm optimization
    Tang, Yinggan
    Guan, Xinping
    CHAOS SOLITONS & FRACTALS, 2009, 40 (03) : 1391 - 1398
  • [42] Parameter estimation of chaotic system with time-delay: A differential evolution approach
    Tang, Yinggan
    Guan, Xinping
    CHAOS SOLITONS & FRACTALS, 2009, 42 (05) : 3132 - 3139
  • [43] An experimental digital communication scheme based on chaotic time-delay system
    Ponomarenko, V. I.
    Prokhorov, M. D.
    Karavaev, A. S.
    Kulminskiy, D. D.
    NONLINEAR DYNAMICS, 2013, 74 (04) : 1013 - 1020
  • [44] Adaptive fuzzy control design for synchronization of chaotic time-delay system
    Zhu, Zhen-Yu
    Zhao, Zhan-Shan
    Zhang, Jing
    Wang, Rui-Kun
    Li, Zhuqing
    INFORMATION SCIENCES, 2020, 535 (225-241) : 225 - 241
  • [45] Hopf bifurcation analysis of some hyperchaotic systems with time-delay controllers
    Zhang, Lan
    Zhang, Chengjian
    KYBERNETIKA, 2008, 44 (01) : 35 - 42
  • [46] Dynamics Analysis of Fractional-Order Memristive Time-Delay Chaotic System and Circuit Implementation
    Dawei Ding
    Hui Liu
    Yecui Weng
    Xiaolei Yao
    Nian Wang
    Journal of Harbin Institute of Technology(New series), 2020, 27 (02) : 65 - 74
  • [47] Characteristics of time-delay complex Lorenz chaotic system and its self-synchronization of time delay
    Zhang Fang-Fang
    Liu Shu-Tang
    Yu Wei-Yong
    ACTA PHYSICA SINICA, 2013, 62 (22)
  • [48] SIMPLE MEMRISTIVE TIME-DELAY CHAOTIC SYSTEMS
    Viet-Thanh Pham
    Buscarino, Arturo
    Fortuna, Luigi
    Frasca, Mattia
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (04):
  • [49] Robust control of time-delay chaotic systems
    Hua, CC
    Guan, XP
    PHYSICS LETTERS A, 2003, 314 (1-2) : 72 - 80
  • [50] Design of Time-Delay Chaotic Electronic Circuits
    Buscarino, Arturo
    Fortuna, Luigi
    Frasca, Mattia
    Sciuto, Gregorio
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2011, 58 (08) : 1888 - 1896