Bifurcation analysis of a first time-delay chaotic system

被引:0
|
作者
Tianzeng Li
Yu Wang
Xiaofeng Zhou
机构
[1] Sichuan University of Science and Engineering,School of Mathematics and Statistics
[2] Artificial Intelligence Key Laboratory of Sichuan Province,undefined
[3] Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things,undefined
[4] Yellow River Conservancy Technical Institute,undefined
关键词
Bifurcation analysis; Periodicity; Chaos; Hopf bifurcation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the dynamic behavior of the chaotic nonlinear time delay systems of general form x˙(t)=g(x(t),x(t−τ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot{x}(t)=g(x(t),x(t-\tau ))$\end{document}. We carry out stability analysis to identify the parameter zone for which the system shows a stable equilibrium response. Through the bifurcation analysis, we establish that the system shows a stable limit cycle through supercritical Hopf bifurcation beyond certain values of delay and parameters. Next, a numerical simulation of the prototype system is used to show that the system has different behaviors: stability, periodicity and chaos with the variation of delay and other parameters, which demonstrates the validity of our method. We give the single- and two-parameter bifurcation diagrams which are employed to explore the dynamics of the system over the whole parameter space.
引用
收藏
相关论文
共 50 条
  • [31] A Chaotic Time-Delay Sampled-Data System and Its Implementation
    Yalcin, Mustak E.
    Yeniceri, Ramazan
    Ozoguz, Serdar
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (03):
  • [32] CHAOTIC BEHAVIOR OF A HYBRID OPTICAL BISTABLE SYSTEM WITHOUT A TIME-DELAY
    MITSCHKE, F
    FLUGGEN, N
    APPLIED PHYSICS B-PHOTOPHYSICS AND LASER CHEMISTRY, 1984, 35 (02): : 59 - 64
  • [33] Bifurcation analysis in a hybrid time delay system
    Kousaka, T
    Ma, Y
    Proceedings of the 2005 European Conference on Circuit Theory and Design, Vol 1, 2005, : 7 - 10
  • [34] Coding and recovery of information masked by the chaotic signal of a time-delay system
    Ponomarenko, VI
    Prokhorov, MD
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2004, 49 (09) : 1031 - 1037
  • [35] Separation of the informative component from a chaotic signal of a time-delay system
    Ponomarenko, VI
    Prokhorov, MD
    TECHNICAL PHYSICS LETTERS, 2002, 28 (08) : 680 - 683
  • [36] Chaotic characteristics and circuit implementation in time-delay feedback Lorenz system
    School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
    不详
    Kong Zhi Li Lun Yu Ying Yong, 2009, 8 (911-914):
  • [37] A novel memristive time-delay chaotic system without equilibrium points
    Pham, V. -T.
    Vaidyanathan, S.
    Volos, C. K.
    Jafari, S.
    Kuznetsov, N. V.
    Hoang, T. M.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2016, 225 (01): : 127 - 136
  • [38] Linear Feedback Control and Synchronization for a New Time-Delay Chaotic System
    Wu, Zehu
    Liu, Yunbing
    Chen, Guici
    2015 SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2015, : 381 - 384
  • [39] An experimental digital communication scheme based on chaotic time-delay system
    V. I. Ponomarenko
    M. D. Prokhorov
    A. S. Karavaev
    D. D. Kulminskiy
    Nonlinear Dynamics, 2013, 74 : 1013 - 1020
  • [40] Separation of the informative component from a chaotic signal of a time-delay system
    V. I. Ponomarenko
    M. D. Prokhorov
    Technical Physics Letters, 2002, 28 : 680 - 683