Bifurcation analysis of a first time-delay chaotic system

被引:0
|
作者
Tianzeng Li
Yu Wang
Xiaofeng Zhou
机构
[1] Sichuan University of Science and Engineering,School of Mathematics and Statistics
[2] Artificial Intelligence Key Laboratory of Sichuan Province,undefined
[3] Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things,undefined
[4] Yellow River Conservancy Technical Institute,undefined
关键词
Bifurcation analysis; Periodicity; Chaos; Hopf bifurcation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the dynamic behavior of the chaotic nonlinear time delay systems of general form x˙(t)=g(x(t),x(t−τ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot{x}(t)=g(x(t),x(t-\tau ))$\end{document}. We carry out stability analysis to identify the parameter zone for which the system shows a stable equilibrium response. Through the bifurcation analysis, we establish that the system shows a stable limit cycle through supercritical Hopf bifurcation beyond certain values of delay and parameters. Next, a numerical simulation of the prototype system is used to show that the system has different behaviors: stability, periodicity and chaos with the variation of delay and other parameters, which demonstrates the validity of our method. We give the single- and two-parameter bifurcation diagrams which are employed to explore the dynamics of the system over the whole parameter space.
引用
下载
收藏
相关论文
共 50 条
  • [21] Extracting information masked by the chaotic signal of a time-delay system
    Ponomarenko, VI
    Prokhorov, MD
    PHYSICAL REVIEW E, 2002, 66 (02): : 1 - 026215
  • [22] The synchronization for time-delay of linearly bidirectional coupled chaotic system
    Yu, Yongguang
    CHAOS SOLITONS & FRACTALS, 2007, 33 (04) : 1197 - 1203
  • [23] Bifurcation Analysis of Time-Delay Model of Consumer with the Advertising Effect
    Abd-Rabo, Mahmoud A.
    Zakarya, Mohammed
    Cesarano, Clemente
    Aly, Shaban
    SYMMETRY-BASEL, 2021, 13 (03): : 1 - 21
  • [24] An Experimental Communication Scheme Based on Chaotic Time-Delay System with Switched Delay
    Karavaev, A. S.
    Kulminskiy, D. D.
    Ponomarenko, V. I.
    Prokhorov, M. D.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (10):
  • [25] PROPER CHOICE OF THE TIME-DELAY FOR THE ANALYSIS OF CHAOTIC TIME-SERIES
    LIEBERT, W
    SCHUSTER, HG
    PHYSICS LETTERS A, 1989, 142 (2-3) : 107 - 111
  • [26] Robust control of time-delay chaotic
    Hua, CC
    Guan, XP
    2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 510 - 515
  • [27] Single chaotic neuron with time-delay
    Xie, L
    He, X
    Zhang, WD
    Xu, XM
    2000 IEEE ASIA-PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS: ELECTRONIC COMMUNICATION SYSTEMS, 2000, : 809 - 812
  • [28] A method of identifying parameters of a time-varying time-delay chaotic system
    Chai Qin-Qin
    ACTA PHYSICA SINICA, 2015, 64 (24)
  • [29] Hopf bifurcation of the maglev time-delay feedback system via pseudo-oscillator analysis
    Zhang, Lingling
    Huang, Lihong
    Zhang, Zhizhou
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (5-6) : 667 - 673
  • [30] Hopf bifurcation of time-delay Lienard equations
    Xu, J
    Lu, QS
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (05): : 939 - 951