Bifurcation analysis of a first time-delay chaotic system

被引:0
|
作者
Tianzeng Li
Yu Wang
Xiaofeng Zhou
机构
[1] Sichuan University of Science and Engineering,School of Mathematics and Statistics
[2] Artificial Intelligence Key Laboratory of Sichuan Province,undefined
[3] Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things,undefined
[4] Yellow River Conservancy Technical Institute,undefined
关键词
Bifurcation analysis; Periodicity; Chaos; Hopf bifurcation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the dynamic behavior of the chaotic nonlinear time delay systems of general form x˙(t)=g(x(t),x(t−τ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot{x}(t)=g(x(t),x(t-\tau ))$\end{document}. We carry out stability analysis to identify the parameter zone for which the system shows a stable equilibrium response. Through the bifurcation analysis, we establish that the system shows a stable limit cycle through supercritical Hopf bifurcation beyond certain values of delay and parameters. Next, a numerical simulation of the prototype system is used to show that the system has different behaviors: stability, periodicity and chaos with the variation of delay and other parameters, which demonstrates the validity of our method. We give the single- and two-parameter bifurcation diagrams which are employed to explore the dynamics of the system over the whole parameter space.
引用
收藏
相关论文
共 50 条
  • [1] Bifurcation analysis of a first time-delay chaotic system
    Li, Tianzeng
    Wang, Yu
    Zhou, Xiaofeng
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [2] Parameter identification of first order time-delay chaotic system
    Peng Hai-Peng
    Li Li-Xiang
    Yang Yi-Xian
    Zhang Xiao-Hong
    Gao Yang
    [J]. ACTA PHYSICA SINICA, 2007, 56 (11) : 6245 - 6249
  • [3] Global synchronization criteria with channel time-delay for chaotic time-delay system
    Sun, JT
    [J]. CHAOS SOLITONS & FRACTALS, 2004, 21 (04) : 967 - 975
  • [4] Synchronization of a class of time-delay chaotic system
    Wang Zhi-feng
    Wang Xiang-dong
    Peng Hai-peng
    Li Li-xiang
    [J]. Proceedings of 2005 Chinese Control and Decision Conference, Vols 1 and 2, 2005, : 240 - 242
  • [5] Chaotic Modeling of Time-Delay Memristive System
    Jin, Ju
    Yu, Yongbin
    Liu, Yijing
    Pu, Xiaorong
    Liao, Xiaofeng
    [J]. ADVANCED INTELLIGENT COMPUTING, 2011, 6838 : 634 - +
  • [6] Synchronization of Time-Delay Chaotic System in Presence of Noise
    Min Lei
    Hai-peng Peng
    Chun-yu Yang
    Li-xiang Li
    [J]. International Journal of Computational Intelligence Systems, 2012, 5 : 834 - 840
  • [7] Impulsive Control and Synchronization of Time-delay Chaotic System
    Yan, Yan
    Gui, Zhanji
    Wang, Kaihua
    [J]. PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY, ENVIRONMENT AND CHEMICAL ENGINEERING (AEECE 2016), 2016, 89 : 353 - 358
  • [8] Synchronization of Time-Delay Chaotic System in Presence of Noise
    Lei, Min
    Peng, Hai-peng
    Yang, Chun-yu
    Li, Li-xiang
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2012, 5 (05): : 834 - 840
  • [9] Impulsive synchronization for a chaotic system with channel time-delay
    Liu, Guangmin
    Ding, Wei
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (02) : 958 - 965
  • [10] Bifurcation analysis of time-delay control systems with saturation
    Pagano, DJ
    Ponce, E
    Aracil, J
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (06): : 1089 - 1109