Some results on strong Randers metrics

被引:0
|
作者
Xiaohuan Mo
Hongmei Zhu
机构
[1] Peking University,Key Laboratory of Pure and Applied Mathematics, School of Mathematical Sciences
[2] Henan Normal University,College of Mathematics and Information Science
来源
关键词
Complex Finsler manifold; Kähler Randers metric ; Holomorphic sectional curvature; 53C60; 53B40;
D O I
暂无
中图分类号
学科分类号
摘要
Let F:=α+|β|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F:=\alpha +|\beta |$$\end{document} be a strong Randers metric on a complex manifold. We show that F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F$$\end{document} is Kähler if and only if β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} is parallel with respect to α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. Furthermore if α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} has constant holomorphic sectional curvature, we show that the following assertions are equivalent: (i) F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F$$\end{document} is Kähler; (ii) F=|v|2+⟨c,v¯⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F=|v|^{2}+\langle c,\bar{v}\rangle $$\end{document} is a Minkowskian metric unless F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F$$\end{document} is usually Kählerian.
引用
收藏
页码:24 / 34
页数:10
相关论文
共 50 条
  • [1] Some results on strong Randers metrics
    Mo, Xiaohuan
    Zhu, Hongmei
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2015, 71 (01) : 24 - 34
  • [2] Some remarks on Einstein-Randers metrics
    Tang, Xiaoyun
    Yu, Changtao
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2018, 58 : 83 - 102
  • [3] Einstein-Randers metrics on some homogeneous manifolds
    Chen, Zhiqi
    Deng, Shaoqiang
    Liang, Ke
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 91 : 114 - 120
  • [4] Some Einstein-Randers metrics on homogeneous spaces
    Wang, Hui
    Deng, Shaoqiang
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) : 4407 - 4414
  • [5] ON COMPLEX RANDERS METRICS
    Chen, Bin
    Shen, Yibing
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2010, 21 (08) : 971 - 986
  • [6] On Homogeneous Randers Metrics
    Sadighi, Akbar
    Toomanian, Megerdich
    Najafi, Behzad
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2021, 14 (01): : 217 - 225
  • [7] New Einstein-Randers metrics on some homogeneous manifolds
    Tan, Ju
    Xu, Na
    [J]. MATHEMATISCHE NACHRICHTEN, 2018, 291 (17-18) : 2693 - 2708
  • [8] Homogeneous Einstein-Randers metrics on some Stiefel manifolds
    Tan, Ju
    Xu, Na
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2018, 131 : 182 - 188
  • [9] On the projective Randers metrics
    Rafie-Rad, Mehdi
    Rezaei, Bahman
    [J]. COMPTES RENDUS MATHEMATIQUE, 2012, 350 (5-6) : 281 - 283
  • [10] ON WEAKLY STRETCH RANDERS METRICS
    Tayebi, Akbar
    Ghasemi, Asma
    Sabzevari, Mehdi
    [J]. MATEMATICKI VESNIK, 2021, 73 (03): : 174 - 182