Some Einstein-Randers metrics on homogeneous spaces

被引:16
|
作者
Wang, Hui [1 ]
Deng, Shaoqiang [1 ,2 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
关键词
Einstein metric; Homogeneous manifold; Ricci curvature; RIEMANNIAN-MANIFOLDS;
D O I
10.1016/j.na.2010.02.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study invariant Einstein-Randers metrics on some homogeneous Riemannian manifolds of rank >= 2. By finding out all the invariant Killing vector fields on the corresponding homogeneous Einstein Riemannian manifolds, we obtain a complete description of all the invariant Einstein-Randers metrics on those homogeneous manifolds. Since the underlying Riemannian Einstein metrics are generically not diagonal, this presents a large number of non-Riemannian homogeneous Einstein-Randers spaces of nonconstant flag curvature. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4407 / 4414
页数:8
相关论文
共 50 条
  • [1] Einstein-Randers metrics on some homogeneous manifolds
    Chen, Zhiqi
    Deng, Shaoqiang
    Liang, Ke
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 91 : 114 - 120
  • [2] Homogeneous Einstein-Randers metrics on some Stiefel manifolds
    Tan, Ju
    Xu, Na
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2018, 131 : 182 - 188
  • [3] Homogeneous Einstein-Randers metrics on Aloff-Wallach spaces
    Liu, Xingda
    Deng, Shaoqiang
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2015, 98 : 196 - 200
  • [4] New Einstein-Randers metrics on some homogeneous manifolds
    Tan, Ju
    Xu, Na
    [J]. MATHEMATISCHE NACHRICHTEN, 2018, 291 (17-18) : 2693 - 2708
  • [5] Homogeneous Einstein-Randers metrics on spheres
    Wang, Hui
    Huang, Libing
    Deng, Shaoqiang
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6295 - 6301
  • [6] Einstein metrics and Einstein-Randers metrics on a class of homogeneous manifolds
    Chen, Chao
    Chen, Zhiqi
    Hu, Yuwang
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (04)
  • [7] Some remarks on Einstein-Randers metrics
    Tang, Xiaoyun
    Yu, Changtao
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2018, 58 : 83 - 102
  • [8] Homogeneous Einstein-Randers metrics on symplectic groups
    Tan, Ju
    Xu, Na
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 472 (02) : 1902 - 1913
  • [9] Einstein Riemannian metrics and Einstein-Randers metrics on a class of homogeneous manifolds
    Kang, Yifang
    Chen, Zhiqi
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 107 : 86 - 91
  • [10] New Einstein-Randers metrics on homogeneous spaces arising from unitary groups
    Tan, Ju
    Xu, Na
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2022, 174