Homogeneous Einstein-Randers metrics on some Stiefel manifolds

被引:1
|
作者
Tan, Ju [1 ]
Xu, Na [1 ]
机构
[1] Anhui Univ Technol, Sch Math & Phys Sci & Engn, Maanshan 243032, Peoples R China
关键词
Stiefel manifolds; Einstein-Randers metrics; Homogeneous manifolds; LIE-GROUPS; SPACES; SPHERES;
D O I
10.1016/j.geomphys.2018.05.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Stiefel manifolds VqRn of all orthonormal q-frames in R-n are diffeomorphic to the homogeneous space SO(n)/SO(n - q). In this paper, we prove that there exist at least four homogeneous Einstein-Randers metrics on SO(n)/SO(n - 4) (n >= 6), Moreover, we get at least six homogeneous Einstein-Randers metrics on SO(7)/SO(2). (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:182 / 188
页数:7
相关论文
共 50 条
  • [1] Einstein-Randers metrics on some homogeneous manifolds
    Chen, Zhiqi
    Deng, Shaoqiang
    Liang, Ke
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 91 : 114 - 120
  • [2] Invariant Einstein-Randers metrics on Stiefel manifolds
    Wang, Hui
    Deng, Shaoqiang
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (01) : 594 - 600
  • [3] New Einstein-Randers metrics on some homogeneous manifolds
    Tan, Ju
    Xu, Na
    [J]. MATHEMATISCHE NACHRICHTEN, 2018, 291 (17-18) : 2693 - 2708
  • [4] Einstein metrics and Einstein-Randers metrics on a class of homogeneous manifolds
    Chen, Chao
    Chen, Zhiqi
    Hu, Yuwang
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (04)
  • [5] Einstein Riemannian metrics and Einstein-Randers metrics on a class of homogeneous manifolds
    Kang, Yifang
    Chen, Zhiqi
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 107 : 86 - 91
  • [6] Some Einstein-Randers metrics on homogeneous spaces
    Wang, Hui
    Deng, Shaoqiang
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) : 4407 - 4414
  • [7] Homogeneous Einstein-Randers metrics on spheres
    Wang, Hui
    Huang, Libing
    Deng, Shaoqiang
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6295 - 6301
  • [8] Homogeneous manifolds admitting non-Riemannian Einstein-Randers metrics
    CHEN ZhiQi
    DENG ShaoQiang
    LIANG Ke
    [J]. Science China Mathematics, 2015, 58 (07) : 1473 - 1482
  • [9] Homogeneous manifolds admitting non-Riemannian Einstein-Randers metrics
    Chen Zhiqi
    Deng ShaoQiang
    Liang Ke
    [J]. SCIENCE CHINA-MATHEMATICS, 2015, 58 (07) : 1473 - 1482
  • [10] Homogeneous manifolds admitting non-Riemannian Einstein-Randers metrics
    ZhiQi Chen
    ShaoQiang Deng
    Ke Liang
    [J]. Science China Mathematics, 2015, 58 : 1473 - 1482