Some results on strong Randers metrics

被引:0
|
作者
Xiaohuan Mo
Hongmei Zhu
机构
[1] Peking University,Key Laboratory of Pure and Applied Mathematics, School of Mathematical Sciences
[2] Henan Normal University,College of Mathematics and Information Science
来源
关键词
Complex Finsler manifold; Kähler Randers metric ; Holomorphic sectional curvature; 53C60; 53B40;
D O I
暂无
中图分类号
学科分类号
摘要
Let F:=α+|β|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F:=\alpha +|\beta |$$\end{document} be a strong Randers metric on a complex manifold. We show that F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F$$\end{document} is Kähler if and only if β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} is parallel with respect to α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. Furthermore if α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} has constant holomorphic sectional curvature, we show that the following assertions are equivalent: (i) F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F$$\end{document} is Kähler; (ii) F=|v|2+⟨c,v¯⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F=|v|^{2}+\langle c,\bar{v}\rangle $$\end{document} is a Minkowskian metric unless F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F$$\end{document} is usually Kählerian.
引用
收藏
页码:24 / 34
页数:10
相关论文
共 50 条
  • [31] On the flag curvature of invariant randers metrics
    Moghaddam, Hamid Reza Salimi
    [J]. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2008, 11 (01) : 1 - 9
  • [32] On the Flag Curvature of Invariant Randers Metrics
    Hamid Reza Salimi Moghaddam
    [J]. Mathematical Physics, Analysis and Geometry, 2008, 11 : 1 - 9
  • [33] RANDERS METRICS OF SECTIONAL FLAG CURVATURE
    Chen, Bin
    Zhao, Lili
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (01): : 55 - 67
  • [34] Invariant randers metrics on homogeneous riemannian manifolds
    Deng, SQ
    Hou, ZX
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (15): : 4353 - 4360
  • [35] Some Results on Harmonic Metrics
    Kadi, Fatima Zohra
    Kacimi, Bouazza
    Ozkan, Mustafa
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [36] Some Results on Harmonic Metrics
    Fatima Zohra Kadi
    Bouazza Kacimi
    Mustafa Özkan
    [J]. Mediterranean Journal of Mathematics, 2023, 20
  • [37] Homogeneous Einstein-Randers metrics on spheres
    Wang, Hui
    Huang, Libing
    Deng, Shaoqiang
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6295 - 6301
  • [38] On Randers metrics with isotropic S-curvature
    Zhong Min Shen
    Hao Xing
    [J]. Acta Mathematica Sinica, English Series, 2008, 24 : 789 - 796
  • [39] Some Remarks on Strong Fuzzy Metrics and Strong Fuzzy Approximating Metrics with Applications in Word Combinatorics
    Bets, Raivis
    Sostak, Alexander
    [J]. MATHEMATICS, 2022, 10 (05)
  • [40] ON GENERALIZED DOUGLAS-WEYL RANDERS METRICS
    Tabatabaeifar, Tayebeh
    Najafi, Behzad
    Rafie-Rad, Mehdi
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (01) : 155 - 172