Rainbow Connection Number, Bridges and Radius

被引:0
|
作者
Jiuying Dong
Xueliang Li
机构
[1] Center for Combinatorics,
[2] LPMC,undefined
[3] Nankai University,undefined
来源
Graphs and Combinatorics | 2013年 / 29卷
关键词
Edge-colored graph; Rainbow connection number; Bridge; Radius; 05C15; 05C40;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a connected graph. The notion of rainbow connection number rc(G) of a graph G was introduced by Chartrand et al. (Math Bohem 133:85–98, 2008). Basavaraju et al. (arXiv:1011.0620v1 [math.CO], 2010) proved that for every bridgeless graph G with radius r, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${rc(G)\leq r(r+2)}$$\end{document} and the bound is tight. In this paper, we show that for a connected graph G with radius r and center vertex u, if we let Dr = {u}, then G has r−1 connected dominating sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ D^{r-1}, D^{r-2},\ldots, D^{1}}$$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D^{r} \subset D^{r-1} \subset D^{r-2} \cdots\subset D^{1} \subset D^{0}=V(G)}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${rc(G)\leq \sum_{i=1}^{r} \max \{2i+1,b_i\}}$$\end{document}, where bi is the number of bridges in E[Di, N(Di)] for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1\leq i \leq r}$$\end{document}. From the result, we can get that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b_i\leq 2i+1}$$\end{document} for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1\leq i\leq r}$$\end{document}, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${rc(G)\leq \sum_{i=1}^{r}(2i+1)= r(r+2)}$$\end{document}; if bi > 2i + 1 for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1\leq i\leq r}$$\end{document} , then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${rc(G)= \sum_{i=1}^{r}b_i}$$\end{document}, the number of bridges of G. This generalizes the result of Basavaraju et al. In addition, an example is given to show that there exist infinitely graphs with bridges whose rc(G) is only dependent on the radius of G, and another example is given to show that there exist infinitely graphs with bridges whose rc(G) is only dependent on the number of bridges in G.
引用
收藏
页码:1733 / 1739
页数:6
相关论文
共 50 条
  • [41] Rainbow Connection Number of Graph Power and Graph Products
    Basavaraju, Manu
    Chandran, L. Sunil
    Rajendraprasad, Deepak
    Ramaswamy, Arunselvan
    GRAPHS AND COMBINATORICS, 2014, 30 (06) : 1363 - 1382
  • [42] The Rainbow Connection Number of Origami Graphs and Pizza Graphs
    Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung
    40132, Indonesia
    Procedia Comput. Sci., (162-167):
  • [43] The rainbow connection number of 2-connected graphs
    Ekstein, Jan
    Holub, Premysl
    Kaiser, Tomas
    Koch, Maria
    Camacho, Stephan Matos
    Ryjacek, Zdenek
    Schiermeyer, Ingo
    DISCRETE MATHEMATICS, 2013, 313 (19) : 1884 - 1892
  • [44] The Rainbow Connection Number of Origami Graphs and Pizza Graphs
    Nabila, S.
    Salman, A. N. M.
    2ND INTERNATIONAL CONFERENCE OF GRAPH THEORY AND INFORMATION SECURITY, 2015, 74 : 162 - 167
  • [45] Total Rainbow Connection Number of Some Graph Operations
    Li, Hengzhe
    Ma, Yingbin
    Zhao, Yan
    AXIOMS, 2022, 11 (06)
  • [46] The Rainbow Vertex Connection Number of Star Wheel Graphs
    Bustan, Ariestha Widyastuty
    Salman, A. N. M.
    INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE (ICSAS) 2019, 2019, 2202
  • [47] The Rainbow Connection Number of the Power Graph of a Finite Group
    Xuanlong Ma
    Min Feng
    Kaishun Wang
    Graphs and Combinatorics, 2016, 32 : 1495 - 1504
  • [48] Rainbow vertex connection number of dense and sparse graphs
    Liu, Mengmeng
    ARS COMBINATORIA, 2016, 125 : 393 - 399
  • [49] The Rainbow Connection Number of Some Subdivided Roof Graphs
    Susanti, Bety Hayat
    Salman, A. N. M.
    Simanjuntak, Rinovia
    PROCEEDINGS OF THE 7TH SEAMS UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2015: ENHANCING THE ROLE OF MATHEMATICS IN INTERDISCIPLINARY RESEARCH, 2016, 1707
  • [50] The Rainbow Connection Number of the Power Graph of a Finite Group
    Ma, Xuanlong
    Feng, Min
    Wang, Kaishun
    GRAPHS AND COMBINATORICS, 2016, 32 (04) : 1495 - 1504