Rainbow Connection Number, Bridges and Radius

被引:0
|
作者
Jiuying Dong
Xueliang Li
机构
[1] Center for Combinatorics,
[2] LPMC,undefined
[3] Nankai University,undefined
来源
Graphs and Combinatorics | 2013年 / 29卷
关键词
Edge-colored graph; Rainbow connection number; Bridge; Radius; 05C15; 05C40;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a connected graph. The notion of rainbow connection number rc(G) of a graph G was introduced by Chartrand et al. (Math Bohem 133:85–98, 2008). Basavaraju et al. (arXiv:1011.0620v1 [math.CO], 2010) proved that for every bridgeless graph G with radius r, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${rc(G)\leq r(r+2)}$$\end{document} and the bound is tight. In this paper, we show that for a connected graph G with radius r and center vertex u, if we let Dr = {u}, then G has r−1 connected dominating sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ D^{r-1}, D^{r-2},\ldots, D^{1}}$$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D^{r} \subset D^{r-1} \subset D^{r-2} \cdots\subset D^{1} \subset D^{0}=V(G)}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${rc(G)\leq \sum_{i=1}^{r} \max \{2i+1,b_i\}}$$\end{document}, where bi is the number of bridges in E[Di, N(Di)] for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1\leq i \leq r}$$\end{document}. From the result, we can get that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b_i\leq 2i+1}$$\end{document} for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1\leq i\leq r}$$\end{document}, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${rc(G)\leq \sum_{i=1}^{r}(2i+1)= r(r+2)}$$\end{document}; if bi > 2i + 1 for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1\leq i\leq r}$$\end{document} , then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${rc(G)= \sum_{i=1}^{r}b_i}$$\end{document}, the number of bridges of G. This generalizes the result of Basavaraju et al. In addition, an example is given to show that there exist infinitely graphs with bridges whose rc(G) is only dependent on the radius of G, and another example is given to show that there exist infinitely graphs with bridges whose rc(G) is only dependent on the number of bridges in G.
引用
收藏
页码:1733 / 1739
页数:6
相关论文
共 50 条
  • [21] The Rainbow (Vertex) Connection Number of Pencil Graphs
    Simamora, Dian N. S.
    Salman, A. N. M.
    2ND INTERNATIONAL CONFERENCE OF GRAPH THEORY AND INFORMATION SECURITY, 2015, 74 : 138 - 142
  • [22] Graphs with small total rainbow connection number
    Yingbin Ma
    Lily Chen
    Hengzhe Li
    Frontiers of Mathematics in China, 2017, 12 : 921 - 936
  • [23] Oriented diameter and rainbow connection number of a graph
    Huang, Xiaolong
    Li, Hengzhe
    Li, Xueliang
    Sun, Yuefang
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2014, 16 (03): : 51 - 60
  • [24] Graphs with vertex rainbow connection number two
    ZaiPing Lu
    YingBin Ma
    Science China Mathematics, 2015, 58 : 1803 - 1810
  • [25] Graphs with vertex rainbow connection number two
    Lu ZaiPing
    Ma YingBin
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (08) : 1803 - 1810
  • [26] A Mathematical Model For Finding The Rainbow Connection Number
    Nuriyeva, Fidan
    Ugurlu, Onur
    Kutucu, Hakan
    2013 7TH INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES (AICT), 2013, : 2 - 4
  • [27] RAINBOW CONNECTION NUMBER OF GRAPHS WITH DIAMETER 3
    Li, Hengzhe
    Li, Xueliang
    Sun, Yuefang
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (01) : 141 - 154
  • [28] On the threshold for rainbow connection number in random graphs
    Heckel, Annika
    Riordan, Oliver
    GRAPHS AND COMBINATORICS, 2016, 32 (01) : 161 - 174
  • [29] Total Rainbow Connection Number and Complementary Graph
    Yingbin Ma
    Results in Mathematics, 2016, 70 : 173 - 182
  • [30] Oriented diameter and rainbow connection number of a graph
    Center for Combinatorics and LPMC-TJKLC, Nankai University, Tianjin, China
    1600, Discrete Mathematics and Theoretical Computer Science (16):