Rainbow Connection Number, Bridges and Radius

被引:0
|
作者
Jiuying Dong
Xueliang Li
机构
[1] Center for Combinatorics,
[2] LPMC,undefined
[3] Nankai University,undefined
来源
Graphs and Combinatorics | 2013年 / 29卷
关键词
Edge-colored graph; Rainbow connection number; Bridge; Radius; 05C15; 05C40;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a connected graph. The notion of rainbow connection number rc(G) of a graph G was introduced by Chartrand et al. (Math Bohem 133:85–98, 2008). Basavaraju et al. (arXiv:1011.0620v1 [math.CO], 2010) proved that for every bridgeless graph G with radius r, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${rc(G)\leq r(r+2)}$$\end{document} and the bound is tight. In this paper, we show that for a connected graph G with radius r and center vertex u, if we let Dr = {u}, then G has r−1 connected dominating sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ D^{r-1}, D^{r-2},\ldots, D^{1}}$$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D^{r} \subset D^{r-1} \subset D^{r-2} \cdots\subset D^{1} \subset D^{0}=V(G)}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${rc(G)\leq \sum_{i=1}^{r} \max \{2i+1,b_i\}}$$\end{document}, where bi is the number of bridges in E[Di, N(Di)] for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1\leq i \leq r}$$\end{document}. From the result, we can get that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b_i\leq 2i+1}$$\end{document} for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1\leq i\leq r}$$\end{document}, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${rc(G)\leq \sum_{i=1}^{r}(2i+1)= r(r+2)}$$\end{document}; if bi > 2i + 1 for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1\leq i\leq r}$$\end{document} , then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${rc(G)= \sum_{i=1}^{r}b_i}$$\end{document}, the number of bridges of G. This generalizes the result of Basavaraju et al. In addition, an example is given to show that there exist infinitely graphs with bridges whose rc(G) is only dependent on the radius of G, and another example is given to show that there exist infinitely graphs with bridges whose rc(G) is only dependent on the number of bridges in G.
引用
收藏
页码:1733 / 1739
页数:6
相关论文
共 50 条
  • [31] The hitting time of rainbow connection number two
    Heckel, Annika
    Riordan, Oliver
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (04):
  • [32] Rainbow connection number of corona product of graphs
    Septyanto, Fendy
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2024, 12 (02) : 363 - 378
  • [33] Rainbow connection number and connected dominating sets
    Chandran, L. Sunil
    Das, Anita
    Rajendraprasad, Deepak
    Varma, Nithin M.
    JOURNAL OF GRAPH THEORY, 2012, 71 (02) : 206 - 218
  • [34] Graphs with vertex rainbow connection number two
    LU ZaiPing
    MA YingBin
    Science China(Mathematics), 2015, 58 (08) : 1803 - 1810
  • [35] Total Rainbow Connection Number and Complementary Graph
    Ma, Yingbin
    RESULTS IN MATHEMATICS, 2016, 70 (1-2) : 173 - 182
  • [36] The (Strong) Rainbow Connection Number of Stellar Graphs
    Shulhany, M. A.
    Salman, A. N. M.
    PROCEEDINGS OF INTERNATIONAL SEMINAR ON MATHEMATICS, SCIENCE, AND COMPUTER SCIENCE EDUCATION (MSCEIS 2015), 2016, 1708
  • [37] Distance-Local Rainbow Connection Number
    Septyanto, Fendy
    Sugeng, Kiki A.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (04) : 1027 - 1039
  • [38] Rainbow connection number of amalgamation of some graphs
    Fitriani, D.
    Salman, A. N. M.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2016, 13 (01) : 90 - 99
  • [39] Proper (Strong) Rainbow Connection and Proper (Strong) Rainbow Vertex Connection of Graphs with Large Clique Number
    Ma, Yingbin
    Xue, Yanfeng
    Zhang, Xiaoxue
    JOURNAL OF INTERCONNECTION NETWORKS, 2025, 25 (01)
  • [40] On rainbow connection and strong rainbow connection number of amalgamation of prism graph P3,2
    Palupi, C. D. R.
    Aribowo, W.
    Irene, Y.
    Hasanah, I.
    1ST INTERNATIONAL CONFERENCE OF COMBINATORICS, GRAPH THEORY, AND NETWORK TOPOLOGY, 2018, 1008