Rainbow Connection Number, Bridges and Radius

被引:0
|
作者
Jiuying Dong
Xueliang Li
机构
[1] Center for Combinatorics,
[2] LPMC,undefined
[3] Nankai University,undefined
来源
Graphs and Combinatorics | 2013年 / 29卷
关键词
Edge-colored graph; Rainbow connection number; Bridge; Radius; 05C15; 05C40;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a connected graph. The notion of rainbow connection number rc(G) of a graph G was introduced by Chartrand et al. (Math Bohem 133:85–98, 2008). Basavaraju et al. (arXiv:1011.0620v1 [math.CO], 2010) proved that for every bridgeless graph G with radius r, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${rc(G)\leq r(r+2)}$$\end{document} and the bound is tight. In this paper, we show that for a connected graph G with radius r and center vertex u, if we let Dr = {u}, then G has r−1 connected dominating sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ D^{r-1}, D^{r-2},\ldots, D^{1}}$$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D^{r} \subset D^{r-1} \subset D^{r-2} \cdots\subset D^{1} \subset D^{0}=V(G)}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${rc(G)\leq \sum_{i=1}^{r} \max \{2i+1,b_i\}}$$\end{document}, where bi is the number of bridges in E[Di, N(Di)] for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1\leq i \leq r}$$\end{document}. From the result, we can get that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b_i\leq 2i+1}$$\end{document} for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1\leq i\leq r}$$\end{document}, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${rc(G)\leq \sum_{i=1}^{r}(2i+1)= r(r+2)}$$\end{document}; if bi > 2i + 1 for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1\leq i\leq r}$$\end{document} , then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${rc(G)= \sum_{i=1}^{r}b_i}$$\end{document}, the number of bridges of G. This generalizes the result of Basavaraju et al. In addition, an example is given to show that there exist infinitely graphs with bridges whose rc(G) is only dependent on the radius of G, and another example is given to show that there exist infinitely graphs with bridges whose rc(G) is only dependent on the number of bridges in G.
引用
收藏
页码:1733 / 1739
页数:6
相关论文
共 50 条
  • [1] Rainbow Connection Number, Bridges and Radius
    Dong, Jiuying
    Li, Xueliang
    GRAPHS AND COMBINATORICS, 2013, 29 (06) : 1733 - 1739
  • [2] Rainbow Connection Number and Radius
    Basavaraju, Manu
    Chandran, L. Sunil
    Rajendraprasad, Deepak
    Ramaswamy, Arunselvan
    GRAPHS AND COMBINATORICS, 2014, 30 (02) : 275 - 285
  • [3] Rainbow Connection Number and Radius
    Manu Basavaraju
    L. Sunil Chandran
    Deepak Rajendraprasad
    Arunselvan Ramaswamy
    Graphs and Combinatorics, 2014, 30 : 275 - 285
  • [4] Rainbow Connection Number and the Number of Blocks
    Xueliang Li
    Sujuan Liu
    Graphs and Combinatorics, 2015, 31 : 141 - 147
  • [5] Rainbow Connection Number and the Number of Blocks
    Li, Xueliang
    Liu, Sujuan
    GRAPHS AND COMBINATORICS, 2015, 31 (01) : 141 - 147
  • [6] On the rainbow connection number of graphs
    Dror, G.
    Lev, A.
    Roditty, Y.
    Zigdon, R.
    ARS COMBINATORIA, 2017, 133 : 51 - 67
  • [7] Rainbow Connection Number and Connectivity
    Li, Xueliang
    Liu, Sujuan
    Chandran, L. Sunil
    Mathew, Rogers
    Rajendraprasad, Deepak
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):
  • [8] Rainbow Connection Number and Independence Number of a Graph
    Jiuying Dong
    Xueliang Li
    Graphs and Combinatorics, 2016, 32 : 1829 - 1841
  • [9] Rainbow Connection Number and Independence Number of a Graph
    Dong, Jiuying
    Li, Xueliang
    GRAPHS AND COMBINATORICS, 2016, 32 (05) : 1829 - 1841
  • [10] Rainbow Connection Number in Pyramid Networks
    Wang, Fu-Hsing
    Hsu, Cheng-Ju
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON COMPUTER MODELING AND SIMULATION (ICCMS 2019) AND 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND APPLICATIONS (ICICA 2019), 2019, : 147 - 150