On Critical Schrödinger–Kirchhoff-Type Problems Involving the Fractional p-Laplacian with Potential Vanishing at Infinity

被引:0
|
作者
Nguyen Van Thin
Mingqi Xiang
Binlin Zhang
机构
[1] Thai Nguyen University of Education,Department of Mathematics
[2] Thang Long Institute of Mathematics and Applied Sciences,College of Science
[3] Nghiem Xuan Yem,College of Mathematics and Systems Science
[4] Civil Aviation University of China,undefined
[5] Shandong University of Science and Technology,undefined
来源
关键词
Fractional Laplacian; Schrödinger–Kirchhoff-type problem; Mountain pass theorem; Potential vanishing at infinity; 35A15; 35J60; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to study the existence of solutions for critical Schrödinger–Kirchhoff-type problems involving a nonlocal integro-differential operator with potential vanishing at infinity. As a particular case, we consider the following fractional problem: M∬R2N|u(x)-u(y)|p|x-y|N+spdxdy+∫RNV(x)|u(x)|pdx((-Δ)psu(x)+V(x)|u|p-2u)=K(x)(λf(x,u)+|u|ps∗-2u),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}&M\left( \iint _{{\mathbb {R}}^{2N}}\frac{|u(x)-u(y)|^{p}}{|x-y|^{N+sp}}\mathrm{dxdy}+\int _{{\mathbb {R}}^N}V(x)|u(x)|^{p}\mathrm{{d}}x\right) ((-\Delta )_p^{s}u(x)+V(x)|u|^{p-2}u)\\&\quad =K(x)(\lambda f(x,u)+|u|^{p_s^{*}-2}u), \end{aligned}$$\end{document}where M:[0,∞)→[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M:[0, \infty )\rightarrow [0, \infty )$$\end{document} is a continuous function, (-Δ)ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )_p^{s}$$\end{document} is the fractional p-Laplacian, 0<s<1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1<p<\infty $$\end{document} with sp<N,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$sp<N,$$\end{document}ps∗=Np/(N-ps),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_s^{*}=Np/(N-ps),$$\end{document}K, V are nonnegative continuous functions satisfying some conditions, and f is a continuous function on RN×R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N\times {\mathbb {R}}$$\end{document} satisfying the Ambrosetti–Rabinowitz-type condition, λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document} is a real parameter. Using the mountain pass theorem, we obtain the existence of the above problem in suitable space W. For this, we first study the properties of the embedding from W into LKα(RN),α∈[p,ps∗].\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{K}^{\alpha }({\mathbb {R}}^N), \alpha \in [p, p_s^{*}].$$\end{document} Then, we obtain the differentiability of energy functional with some suitable conditions on f. To the best of our knowledge, this is the first existence results for degenerate Kirchhoff-type problems involving the fractional p-Laplacian with potential vanishing at infinity. Finally, we fill some gaps of papers of do Ó et al. (Commun Contemp Math 18: 150063, 2016) and Li et al. (Mediterr J Math 14: 80, 2017).
引用
收藏
相关论文
共 50 条
  • [41] Critical fractional p-Laplacian problems with possibly vanishing potentials
    Perera, Kanishka
    Squassina, Marco
    Yang, Yang
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 433 (02) : 818 - 831
  • [42] A critical Kirchhoff-type problem involving the p&q-Laplacian
    Cammaroto, F.
    Vilasi, L.
    [J]. MATHEMATISCHE NACHRICHTEN, 2014, 287 (2-3) : 184 - 193
  • [43] Ground state solutions of Kirchhoff-type fractional Dirichlet problem with p-Laplacian
    Taiyong Chen
    Wenbin Liu
    [J]. Advances in Difference Equations, 2018
  • [44] KIRCHHOFF-TYPE DIFFERENTIAL INCLUSION PROBLEMS INVOLVING THE FRACTIONAL LAPLACIAN AND STRONG DAMPING
    Xiang, Mingqi
    Zhang, Binlin
    Hu, Die
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (02): : 651 - 669
  • [45] Ground state solutions of Kirchhoff-type fractional Dirichlet problem with p-Laplacian
    Chen, Taiyong
    Liu, Wenbin
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [46] Existence results for a Kirchhoff-type equation involving fractional p(x)-Laplacian
    Zhang, Jinguo
    Yang, Dengyun
    Wu, Yadong
    [J]. AIMS MATHEMATICS, 2021, 6 (08): : 8390 - 8403
  • [47] Infinitely Many Solutions for Critical Degenerate Kirchhoff Type Equations Involving the Fractional p-Laplacian
    Binlin, Zhang
    Fiscella, Alessio
    Liang, Sihua
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 80 (01): : 63 - 80
  • [48] MULTIPLE SOLUTIONS FOR A KIRCHHOFF-TYPE PROBLEM INVOLVING NONLOCAL FRACTIONAL p-LAPLACIAN AND CONCAVE-CONVEX NONLINEARITIES
    Chu, Chang-Mu
    Sun, Jiao-Jiao
    Cai, Zhi-Peng
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (06) : 1803 - 1823
  • [49] EXISTENCE OF SOLUTIONS FOR A CLASS OF P-LAPLACIAN TYPE EQUATION WITH CRITICAL GROWTH AND POTENTIAL VANISHING AT INFINITY
    Deng, Yinbin
    Li, Yi
    Shuai, Wei
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (02) : 683 - 699
  • [50] SUPER-CRITICAL PROBLEMS INVOLVING THE FRACTIONAL P-LAPLACIAN
    Wu, Zijian
    Chen, Haibo
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (04): : 2065 - 2073