On Critical Schrödinger–Kirchhoff-Type Problems Involving the Fractional p-Laplacian with Potential Vanishing at Infinity

被引:0
|
作者
Nguyen Van Thin
Mingqi Xiang
Binlin Zhang
机构
[1] Thai Nguyen University of Education,Department of Mathematics
[2] Thang Long Institute of Mathematics and Applied Sciences,College of Science
[3] Nghiem Xuan Yem,College of Mathematics and Systems Science
[4] Civil Aviation University of China,undefined
[5] Shandong University of Science and Technology,undefined
来源
关键词
Fractional Laplacian; Schrödinger–Kirchhoff-type problem; Mountain pass theorem; Potential vanishing at infinity; 35A15; 35J60; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to study the existence of solutions for critical Schrödinger–Kirchhoff-type problems involving a nonlocal integro-differential operator with potential vanishing at infinity. As a particular case, we consider the following fractional problem: M∬R2N|u(x)-u(y)|p|x-y|N+spdxdy+∫RNV(x)|u(x)|pdx((-Δ)psu(x)+V(x)|u|p-2u)=K(x)(λf(x,u)+|u|ps∗-2u),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}&M\left( \iint _{{\mathbb {R}}^{2N}}\frac{|u(x)-u(y)|^{p}}{|x-y|^{N+sp}}\mathrm{dxdy}+\int _{{\mathbb {R}}^N}V(x)|u(x)|^{p}\mathrm{{d}}x\right) ((-\Delta )_p^{s}u(x)+V(x)|u|^{p-2}u)\\&\quad =K(x)(\lambda f(x,u)+|u|^{p_s^{*}-2}u), \end{aligned}$$\end{document}where M:[0,∞)→[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M:[0, \infty )\rightarrow [0, \infty )$$\end{document} is a continuous function, (-Δ)ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )_p^{s}$$\end{document} is the fractional p-Laplacian, 0<s<1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1<p<\infty $$\end{document} with sp<N,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$sp<N,$$\end{document}ps∗=Np/(N-ps),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_s^{*}=Np/(N-ps),$$\end{document}K, V are nonnegative continuous functions satisfying some conditions, and f is a continuous function on RN×R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N\times {\mathbb {R}}$$\end{document} satisfying the Ambrosetti–Rabinowitz-type condition, λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document} is a real parameter. Using the mountain pass theorem, we obtain the existence of the above problem in suitable space W. For this, we first study the properties of the embedding from W into LKα(RN),α∈[p,ps∗].\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{K}^{\alpha }({\mathbb {R}}^N), \alpha \in [p, p_s^{*}].$$\end{document} Then, we obtain the differentiability of energy functional with some suitable conditions on f. To the best of our knowledge, this is the first existence results for degenerate Kirchhoff-type problems involving the fractional p-Laplacian with potential vanishing at infinity. Finally, we fill some gaps of papers of do Ó et al. (Commun Contemp Math 18: 150063, 2016) and Li et al. (Mediterr J Math 14: 80, 2017).
引用
收藏
相关论文
共 50 条
  • [31] Variational approaches to p-Laplacian discrete problems of Kirchhoff-type
    Heidarkhani, Shapour
    Afrouzi, Ghasem A.
    Henderson, Johnny
    Moradi, Shahin
    Caristi, Giuseppe
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2017, 23 (05) : 917 - 938
  • [32] Multiplicity and asymptotic behavior of solutions to a class of Kirchhoff-type equations involving the fractional p-Laplacian
    Liejun Shen
    [J]. Journal of Inequalities and Applications, 2018
  • [33] Multiplicity and asymptotic behavior of solutions to a class of Kirchhoff-type equations involving the fractional p-Laplacian
    Shen, Liejun
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [34] Existence results for Kirchhoff-type superlinear problems involving the fractional Laplacian
    Zhang Binlin
    Radulescu, Vicentiu D.
    Wang, Li
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (04) : 1061 - 1081
  • [35] Signed and sign-changing solutions for a Kirchhoff-type problem involving the fractional p-Laplacian with critical Hardy nonlinearity
    Gabert, Rodrigo F.
    Rodrigues, Rodrigo S.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (02) : 968 - 995
  • [36] MULTIPLE SOLUTIONS FOR A KIRCHHOFF-TYPE FRACTIONAL COUPLED PROBLEM WITH P-LAPLACIAN
    Wang, Yi
    Tian, Lixin
    Dong, Minjie
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (03): : 1535 - 1555
  • [37] Existence of Solutions for Kirchhoff-Type Fractional Dirichlet Problem with p-Laplacian
    Kang, Danyang
    Liu, Cuiling
    Zhang, Xingyong
    [J]. MATHEMATICS, 2020, 8 (01)
  • [38] Infinitely many solutions for a class of critical Kirchhoff-type equations involving p-Laplacian operator
    Anran Li
    Dandan Fan
    Chongqing Wei
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [39] Infinitely many solutions for a class of critical Kirchhoff-type equations involving p-Laplacian operator
    Li, Anran
    Fan, Dandan
    Wei, Chongqing
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (01):
  • [40] Existence of infinitely many solutions for fractional p-Laplacian Schrödinger–Kirchhoff type equations with sign-changing potential
    Youpei Zhang
    Xianhua Tang
    Jian Zhang
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 569 - 586