Multiplicity and asymptotic behavior of solutions to a class of Kirchhoff-type equations involving the fractional p-Laplacian

被引:3
|
作者
Shen, Liejun [1 ,2 ]
机构
[1] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan, Hubei, Peoples R China
[2] Cent China Normal Univ, Sch Math & Stat, Wuhan, Hubei, Peoples R China
关键词
Critical Sobolev exponent; Fractional p-Laplacian; Kirchhoff; Multiplicity; Asymptotic behavior; POSITIVE SOLUTIONS; EXISTENCE;
D O I
10.1186/s13660-018-1708-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present study is concerned with the following fractional p-Laplacian equation involving a critical Sobolev exponent of Kirchhoff type: [a + b(integral(R2N) vertical bar u(x) - u(y)vertical bar(p)/vertical bar x-y vertical bar(N broken vertical bar) (ps) dx dy)(theta-1)](-Delta)(p)(s)u = vertical bar u vertical bar(p*-2)(s)u + lambda f(x)vertical bar u vertical bar(q-2)u in R-N, where a, b > 0, theta = (N - ps/2)/(N - ps) and q is an element of(1, p) are constants, and (-Delta)(p)(s) is the fractional p-Laplacian operator with 0 < s < 1 < p < infinity and ps < N. For suitable f (x), the above equation possesses at least two nontrivial solutions by variational method for any a, b > 0. Moreover, we regard a > 0 and b > 0 as parameters to obtain convergent properties of solutions for the given problem as a SE arrow 0(+) and b SE arrow 0(+), respectively.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Multiplicity and asymptotic behavior of solutions to a class of Kirchhoff-type equations involving the fractional p-Laplacian
    Liejun Shen
    [J]. Journal of Inequalities and Applications, 2018
  • [2] Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional p-Laplacian
    Xiang, Mingqi
    Zhang, Binlin
    Radulescu, Vicentiu D.
    [J]. NONLINEARITY, 2016, 29 (10) : 3186 - 3205
  • [3] Infinitely many solutions for a class of critical Kirchhoff-type equations involving p-Laplacian operator
    Anran Li
    Dandan Fan
    Chongqing Wei
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [4] Infinitely many solutions for a class of critical Kirchhoff-type equations involving p-Laplacian operator
    Li, Anran
    Fan, Dandan
    Wei, Chongqing
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (01):
  • [5] THREE SOLUTIONS FOR A KIRCHHOFF-TYPE PROBLEM INVOLVING NONLOCAL FRACTIONAL p-LAPLACIAN
    Azroul, E.
    Benkirane, A.
    Srati, M.
    [J]. ADVANCES IN OPERATOR THEORY, 2019, 4 (04): : 821 - 822
  • [6] Existence and multiplicity of solutions for Kirchhoff type equations involving fractional p-Laplacian without compact condition
    Youpei Zhang
    Xianhua Tang
    Jian Zhang
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3147 - 3167
  • [7] BLOWUP OF SOLUTIONS TO DEGENERATE KIRCHHOFF-TYPE DIFFUSION PROBLEMS INVOLVING THE FRACTIONAL p-LAPLACIAN
    Yang, Yanbing
    Tian, Xueteng
    Zhang, Meina
    Shen, Jihong
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [8] Existence and multiplicity of solutions for critical Kirchhoff-type p-Laplacian problems
    Wang, Li
    Xie, Kun
    Zhang, Binlin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (01) : 361 - 378
  • [9] Kirchhoff-type problems involving the fractional p-Laplacian on the Heisenberg group
    Jieyu Zhou
    Lifeng Guo
    Binlin Zhang
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2022, 71 : 1133 - 1157
  • [10] Kirchhoff-type problems involving the fractional p-Laplacian on the Heisenberg group
    Zhou, Jieyu
    Guo, Lifeng
    Zhang, Binlin
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (03) : 1133 - 1157