Kirchhoff-type problems involving the fractional p-Laplacian on the Heisenberg group

被引:0
|
作者
Jieyu Zhou
Lifeng Guo
Binlin Zhang
机构
[1] Northeast Petroleum University,School of Mathematics and Statistics
[2] Shandong University of Science and Technology,College of Mathematics and Systems Science
关键词
Heisenberg group; Fractional Laplacian; Mountain pass theorem; Kirchhoff type problem; 35J20; 35B33; 58E05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are interested in the existence of solutions for a class of Kirchhoff-type problems driven by a non-local integro-differential operator with the homogeneous Dirichlet boundary conditions on the Heisenberg group as follows: M(∬H2N|u(ξ)-u(η)|pK(η-1∘ξ)dξdη)£Kpu=f(ξ,u)inΩ,u=0inHN\Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} M(\iint _{{\mathbb {H}}^{2N}}|u(\xi )-u(\eta )|^{p}K(\eta ^{-1}\circ \xi )d\xi \,d\eta )\pounds ^{p}_{K}u=f(\xi ,u) &{} { \text{ in } } \Omega ,\\ u=0 &{} { \text{ in } } {\mathbb {H}}^N \setminus \Omega , \end{array} \right. \end{aligned}$$\end{document}where £Kp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pounds ^{p}_{K}$$\end{document} is a non-local integro-differential operator with singular kernel K,Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K,\Omega$$\end{document} is an open bounded subset of the Heisenberg group HN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^N$$\end{document} with Lipshcitz boundary ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega$$\end{document}. Under some suitable assumptions on the functions M and f, together with the variational methods and the mountain pass theorem, we discuss the existence of weak solutions for the above problem on the Heisenberg group.
引用
收藏
页码:1133 / 1157
页数:24
相关论文
共 50 条
  • [1] Kirchhoff-type problems involving the fractional p-Laplacian on the Heisenberg group
    Zhou, Jieyu
    Guo, Lifeng
    Zhang, Binlin
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (03) : 1133 - 1157
  • [2] Degenerate Kirchhoff-type diffusion problems involving the fractional p-Laplacian
    Pan, Ning
    Zhang, Binlin
    Cao, Jun
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 37 : 56 - 70
  • [3] BLOWUP OF SOLUTIONS TO DEGENERATE KIRCHHOFF-TYPE DIFFUSION PROBLEMS INVOLVING THE FRACTIONAL p-LAPLACIAN
    Yang, Yanbing
    Tian, Xueteng
    Zhang, Meina
    Shen, Jihong
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [4] THREE SOLUTIONS FOR A KIRCHHOFF-TYPE PROBLEM INVOLVING NONLOCAL FRACTIONAL p-LAPLACIAN
    Azroul, E.
    Benkirane, A.
    Srati, M.
    [J]. ADVANCES IN OPERATOR THEORY, 2019, 4 (04): : 821 - 822
  • [5] On Critical Schrödinger–Kirchhoff-Type Problems Involving the Fractional p-Laplacian with Potential Vanishing at Infinity
    Nguyen Van Thin
    Mingqi Xiang
    Binlin Zhang
    [J]. Mediterranean Journal of Mathematics, 2021, 18
  • [6] Superlinear Kirchhoff-type problems of the fractional p-Laplacian without the (AR) condition
    Jiabin Zuo
    Tianqing An
    Mingwei Li
    [J]. Boundary Value Problems, 2018
  • [7] Superlinear Kirchhoff-type problems of the fractional p-Laplacian without the (AR) condition
    Zuo, Jiabin
    An, Tianqing
    Li, Mingwei
    [J]. BOUNDARY VALUE PROBLEMS, 2018,
  • [8] Perturbed Kirchhoff-type p-Laplacian discrete problems
    Shapour Heidarkhani
    Giuseppe Caristi
    Amjad Salari
    [J]. Collectanea Mathematica, 2017, 68 : 401 - 418
  • [9] Perturbed Kirchhoff-type p-Laplacian discrete problems
    Heidarkhani, Shapour
    Caristi, Giuseppe
    Salari, Amjad
    [J]. COLLECTANEA MATHEMATICA, 2017, 68 (03) : 401 - 418
  • [10] Qualitative Analysis for a Degenerate Kirchhoff-Type Diffusion Equation Involving the Fractional p-Laplacian
    Xu, Guangyu
    Zhou, Jun
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (SUPPL 1): : S465 - S508