Critical fractional p-Laplacian problems with possibly vanishing potentials

被引:23
|
作者
Perera, Kanishka [1 ]
Squassina, Marco [2 ]
Yang, Yang [3 ]
机构
[1] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[2] Univ Verona, Dipartimento Informat, I-37134 Verona, Italy
[3] Jiangnan Univ, Sch Sci, Wuxi 214122, Jiangsu, Peoples R China
关键词
Fractional p-Laplacian; Critical exponent; External potentials; Nontrivial solutions; Generalized linking; Z(2)-cohomological index; NONLINEAR SCHRODINGER-EQUATIONS; EXISTENCE; V(INFINITY)=0; EIGENVALUE;
D O I
10.1016/j.jmaa.2015.08.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain nontrivial solutions of a critical fractional p-Laplacian equation in the whole space and with possibly vanishing potentials. In addition to the usual difficulty of the lack of compactness associated with problems involving critical Sobolev exponents, the problem is further complicated by the absence of a direct sum decomposition suitable for applying classical linking arguments. We overcome this difficulty using a generalized linking construction based on the Z(2)-cohomological index. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:818 / 831
页数:14
相关论文
共 50 条
  • [1] ASYMMETRIC CRITICAL FRACTIONAL p-LAPLACIAN PROBLEMS
    Huang, Li
    Yang, Yang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [2] On the fractional p-Laplacian problems
    Choi, Q-Heung
    Jung, Tacksun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [3] On the fractional p-Laplacian problems
    Q-Heung Choi
    Tacksun Jung
    Journal of Inequalities and Applications, 2021
  • [4] FRACTIONAL p&q-LAPLACIAN PROBLEMS WITH POTENTIALS VANISHING AT INFINITY
    Isernia, Teresa
    OPUSCULA MATHEMATICA, 2020, 40 (01) : 93 - 110
  • [5] On Critical Schrodinger-Kirchhoff-Type Problems Involving the Fractional p-Laplacian with Potential Vanishing at Infinity
    Nguyen Van Thin
    Xiang, Mingqi
    Zhang, Binlin
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (01)
  • [6] Fractional p-Laplacian Problems with Hardy Terms and Critical Exponents
    Fiscella, Alessio
    Mirzaee, Hadi
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2019, 38 (04): : 483 - 498
  • [7] SUPER-CRITICAL PROBLEMS INVOLVING THE FRACTIONAL P-LAPLACIAN
    Wu, Zijian
    Chen, Haibo
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (04): : 2065 - 2073
  • [8] Bifurcation and multiplicity results for critical fractional p-Laplacian problems
    Perera, Kanishka
    Squassina, Marco
    Yang, Yang
    MATHEMATISCHE NACHRICHTEN, 2016, 289 (2-3) : 332 - 342
  • [9] On Critical Schrödinger–Kirchhoff-Type Problems Involving the Fractional p-Laplacian with Potential Vanishing at Infinity
    Nguyen Van Thin
    Mingqi Xiang
    Binlin Zhang
    Mediterranean Journal of Mathematics, 2021, 18
  • [10] ON FRACTIONAL p-LAPLACIAN PROBLEMS WITH WEIGHT
    Lehrer, Raquel
    Maia, Liliane A.
    Squassina, Marco
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2015, 28 (1-2) : 15 - 28