ASYMMETRIC CRITICAL FRACTIONAL p-LAPLACIAN PROBLEMS

被引:0
|
作者
Huang, Li [1 ]
Yang, Yang [1 ]
机构
[1] Jiangnan Univ, Sch Sci, Wuxi 214122, Jiangsu, Peoples R China
关键词
Fractional p-Laplacian; critical nonlinearity; asymmetric nonlinearity; linking; Z(2)-cohomological index; BIFURCATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the asymmetric critical fractional p-Laplacian problem (-Delta)(p)(s)u = lambda vertical bar u vertical bar(p-2)u + u(+)(s)(p)*-1 , in Omega; u = 0, in R-N \ Omega; where lambda > 0 is a constant, p(s)* = Np/(N - sp) is the fractional critical Sobolev exponent, and u(+) (x) = max{u(x), 0}. This extends a result in the literature for the local case s = 1. We prove the theorem based on the concentration compactness principle of the fractional p-Laplacian and a linking theorem based on the Z(2)-cohomological index.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Asymmetric critical p-Laplacian problems
    Kanishka Perera
    Yang Yang
    Zhitao Zhang
    Calculus of Variations and Partial Differential Equations, 2018, 57
  • [2] Asymmetric critical p-Laplacian problems
    Perera, Kanishka
    Yang, Yang
    Zhang, Zhitao
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (05)
  • [3] On the fractional p-Laplacian problems
    Choi, Q-Heung
    Jung, Tacksun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [4] On the fractional p-Laplacian problems
    Q-Heung Choi
    Tacksun Jung
    Journal of Inequalities and Applications, 2021
  • [5] Fractional p-Laplacian Problems with Hardy Terms and Critical Exponents
    Fiscella, Alessio
    Mirzaee, Hadi
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2019, 38 (04): : 483 - 498
  • [6] SUPER-CRITICAL PROBLEMS INVOLVING THE FRACTIONAL P-LAPLACIAN
    Wu, Zijian
    Chen, Haibo
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (04): : 2065 - 2073
  • [7] Critical fractional p-Laplacian problems with possibly vanishing potentials
    Perera, Kanishka
    Squassina, Marco
    Yang, Yang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 433 (02) : 818 - 831
  • [8] Bifurcation and multiplicity results for critical fractional p-Laplacian problems
    Perera, Kanishka
    Squassina, Marco
    Yang, Yang
    MATHEMATISCHE NACHRICHTEN, 2016, 289 (2-3) : 332 - 342
  • [9] ON FRACTIONAL p-LAPLACIAN PROBLEMS WITH WEIGHT
    Lehrer, Raquel
    Maia, Liliane A.
    Squassina, Marco
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2015, 28 (1-2) : 15 - 28
  • [10] Limit problems for a Fractional p-Laplacian as p → ∞
    Ferreira, Raul
    Perez-Llanos, Mayte
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 23 (02):