Critical fractional p-Laplacian problems with possibly vanishing potentials

被引:23
|
作者
Perera, Kanishka [1 ]
Squassina, Marco [2 ]
Yang, Yang [3 ]
机构
[1] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[2] Univ Verona, Dipartimento Informat, I-37134 Verona, Italy
[3] Jiangnan Univ, Sch Sci, Wuxi 214122, Jiangsu, Peoples R China
关键词
Fractional p-Laplacian; Critical exponent; External potentials; Nontrivial solutions; Generalized linking; Z(2)-cohomological index; NONLINEAR SCHRODINGER-EQUATIONS; EXISTENCE; V(INFINITY)=0; EIGENVALUE;
D O I
10.1016/j.jmaa.2015.08.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain nontrivial solutions of a critical fractional p-Laplacian equation in the whole space and with possibly vanishing potentials. In addition to the usual difficulty of the lack of compactness associated with problems involving critical Sobolev exponents, the problem is further complicated by the absence of a direct sum decomposition suitable for applying classical linking arguments. We overcome this difficulty using a generalized linking construction based on the Z(2)-cohomological index. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:818 / 831
页数:14
相关论文
共 50 条
  • [21] Critical p-Laplacian problems in R(N).
    Swanson, CA
    Yu, LS
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1995, 169 : 233 - 250
  • [22] p-Laplacian problems with critical Sobolev exponent
    Palatucci, Giampiero
    ASYMPTOTIC ANALYSIS, 2011, 73 (1-2) : 37 - 52
  • [23] Multiplicity results for critical p-Laplacian problems
    Giuseppina Barletta
    Pasquale Candito
    Salvatore A. Marano
    Kanishka Perera
    Annali di Matematica Pura ed Applicata (1923 -), 2017, 196 : 1431 - 1440
  • [24] Multiplicity results for critical p-Laplacian problems
    Barletta, Giuseppina
    Candito, Pasquale
    Marano, Salvatore A.
    Perera, Kanishka
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (04) : 1431 - 1440
  • [25] p-Laplacian problems with critical Sobolev exponents
    Perera, Kanishka
    Silva, Elves A. B.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (02) : 454 - 459
  • [26] Critical Fractional p-Laplacian System with Negative Exponents
    Zhu, Qinghao
    Qi, Jianming
    JOURNAL OF FUNCTION SPACES, 2023, 2023
  • [27] Positive Solutions for Perturbed Fractional p-Laplacian Problems
    Tao, Mengfei
    Zhang, Binlin
    FRACTAL AND FRACTIONAL, 2022, 6 (10)
  • [28] Eigenvalue Problems for Generalized p-Laplacian Fractional Equations
    Diao, Yajing
    IAENG International Journal of Applied Mathematics, 2023, 53 (03)
  • [29] Critical Concave Convex Ambrosetti-Prodi Type Problems for Fractional p-Laplacian
    Bueno, H. P.
    Huerto Caqui, E.
    Miyagaki, O. H.
    Pereira, F. R.
    ADVANCED NONLINEAR STUDIES, 2020, 20 (04) : 847 - 865
  • [30] Positive Solutions for a Class of Fractional p-Laplacian Equation with Critical Sobolev Exponent and Decaying Potentials
    Na Li
    Xiao-ming He
    Acta Mathematicae Applicatae Sinica, English Series, 2022, 38 : 463 - 483