The statistical properties of the solar soft X-ray fluence during 1997–2008

被引:0
|
作者
Yulin Chen
Guiming Le
Yangping Lu
Minhao Chen
Liuguan Ding
Zhiqiang Yin
机构
[1] Nanjing University of Information Science and Technology,College of Mathematics and Statistics
[2] National Center for Space Weather,Key Laboratory of Space Weather
[3] China Meteorological Administration,National Astronomical Observatories
[4] Chinese Academy of Sciences,undefined
来源
关键词
Solar active region; Solar flares; SXR flare fluence;
D O I
暂无
中图分类号
学科分类号
摘要
The statistical properties of the solar soft X-ray (SXR) flare fluence, i.e. the time integral of SXR flux of a flare, FSXR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{SXR}}$\end{document}, and sum of the FSXR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{SXR}}$\end{document} of all flares produced by a solar active region (AR), FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}$\end{document}, during 1997–2008 have been investigated. The results show that FSXR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{SXR}}$\end{document} has moderate correlation with the area of the associated AR, while the correlation between FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}$\end{document} and the largest area of the associated AR is also moderate. The total number of ARs that can produce at least one SXR flare during 1997–2008, Nt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N_{t}$\end{document}, is 1408. The sum of FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}$\end{document} produced by 1408 ARs, ∑FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum F_{\mathit{AR}}$\end{document}, is 89 585.81 (erg s cm−2) and the average value of FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}$\end{document} is 63.6 (erg s cm−2). 34 ARs (FAR≥500ergscm−2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}\ge 500\ \mbox{erg}\,\mbox{s}\,\mbox{cm}^{-2}$\end{document}) contributed 55.72 % of ∑FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum F_{\mathit{AR}}$\end{document}. 111 ARs (100(ergscm−2)≤FAR<500(ergscm−2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(100\ (\mbox{erg}\,\mbox{s}\,\mbox{cm}^{-2})\le F_{\mathit{AR}}<500\ (\mbox{erg}\,\mbox{s}\,\mbox{cm}^{-2}))$\end{document} contributed 24.33 % of ∑FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum F_{\mathit{AR}}$\end{document}. 437 ARs (10(ergscm−2)≤FAR<100(ergscm−2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(10\ (\mbox{erg}\,\mbox{s}\,\mbox{cm}^{-2} )\le F_{\mathit{AR}}< 100\ (\mbox{erg}\,\mbox{s}\,\mbox{cm}^{-2}))$\end{document} contributed 17.48 % of ∑FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum F_{\mathit{AR}}$\end{document}. The rest 826 ARs only contributed 2.52 % of ∑FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum F_{\mathit{AR}}$\end{document}. The number of ARs decreases dramatically with FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}$\end{document} and the distribution function of FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathit{AR}}$\end{document} is N(FAR)=2840e−0.1286FAR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N(F_{\mathit{AR}})=2840e^{-0.1286F_{\mathit{AR}}}$\end{document}.
引用
下载
收藏
相关论文
共 50 条
  • [41] Investigation of Hemispherical Variations of Soft X-Ray Solar Flares during Solar Cycles 21 to 24
    Prasad, Amrita
    Roy, Soumya
    Ghosh, Koushik
    Panja, Subhash Chandra
    Patra, Sankar Narayan
    SOLAR SYSTEM RESEARCH, 2021, 55 (02) : 169 - 182
  • [42] Soft X-ray irradiances during solar flares observed by TIMED-SEE
    Rodgers, E. M.
    Bailey, S. M.
    Warren, H. P.
    Woods, T. N.
    Eparvier, F. G.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2006, 111 (A10)
  • [43] Investigation of Hemispherical Variations of Soft X-Ray Solar Flares during Solar Cycles 21 to 24
    Amrita Prasad
    Soumya Roy
    Koushik Ghosh
    Subhash Chandra Panja
    Sankar Narayan Patra
    Solar System Research, 2021, 55 : 169 - 182
  • [44] Study of Asymmetric Behavior of Soft X-Ray Flares During Solar Cycle 24
    Prasad, Amrita
    Roy, Soumya
    Panja, Subhash Chandra
    Patra, Sankar Narayan
    PROCEEDINGS OF 2020 IEEE APPLIED SIGNAL PROCESSING CONFERENCE (ASPCON 2020), 2020, : 21 - 25
  • [45] The soft X-ray properties of AGN from the CJF sample - A correlation analysis between soft X-ray and VLBI properties
    Britzen, S.
    Brinkmann, W.
    Campbell, R. M.
    Gliozzi, M.
    Readhead, A. C. S.
    Browne, I. W. A.
    Wilkinson, P.
    ASTRONOMY & ASTROPHYSICS, 2007, 476 (02) : 759 - U20
  • [46] The correlation timescale of the X-ray flux during the outbursts of soft X-ray transients
    Wu YuXiang
    Yu WenFei
    Li TiPei
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2010, 53 : 161 - 167
  • [47] The correlation timescale of the X-ray flux during the outbursts of soft X-ray transients
    WU YuXiang1
    2 Department of Engineering Physics & Center for Astrophysics
    Science China(Physics,Mechanics & Astronomy), 2010, (S1) : 161 - 167
  • [48] The correlation timescale of the X-ray flux during the outbursts of soft X-ray transients
    YuXiang Wu
    WenFei Yu
    TiPei Li
    Science China Physics, Mechanics and Astronomy, 2010, 53 : 161 - 167
  • [49] Statistical Properties of X-Ray Flares from the Supergiant Fast X-Ray Transients
    Zhang, Wen-Long
    Yi, Shuang-Xi
    Yang, Yu-Peng
    Qin, Ying
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2022, 22 (06)
  • [50] Statistical Properties of X-Ray Flares from the Supergiant Fast X-Ray Transients
    Wen-Long Zhang
    Shuang-Xi Yi
    Yu-Peng Yang
    Ying Qin
    Research in Astronomy and Astrophysics, 2022, (06) : 120 - 127